

TIVICAY®

(Dolutegravir)

DOLUTEGRAVIR BASED REGIMEN

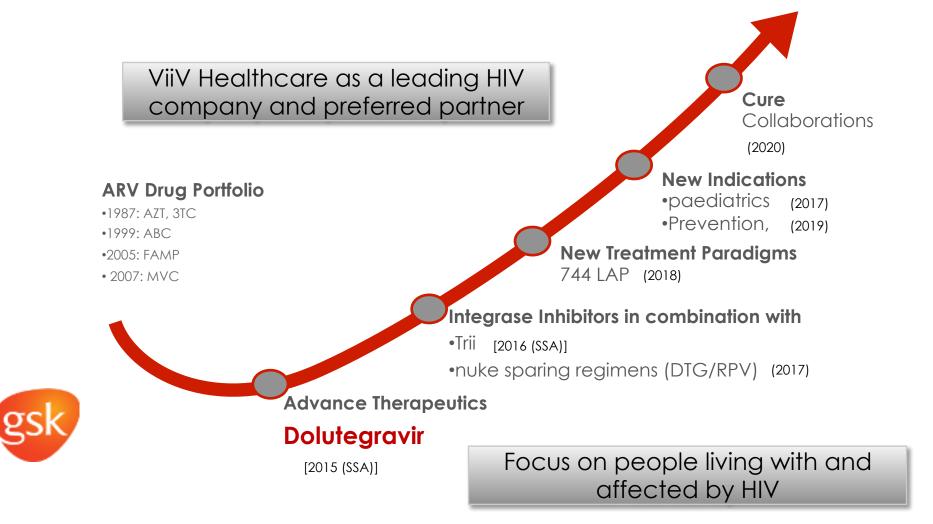
Sibongile KUBHEKA

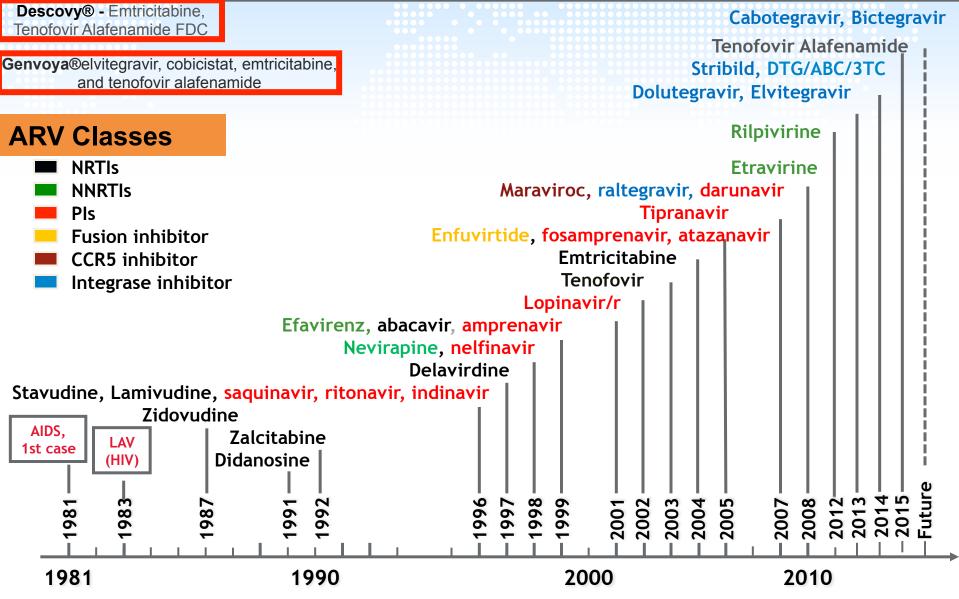
MBCHB, MPharmMED, DipHIVMan Regional Medical Director, Middle East & Africa ViiV Healthcare TK/DLG/0018/16

DISCLOSURE:

 Employee of ViiV Healthcare
 Non-Executive Director on the South Africa GlaxoSmithKline Consumer Healthcare Pty Ltd Subsidiary Board

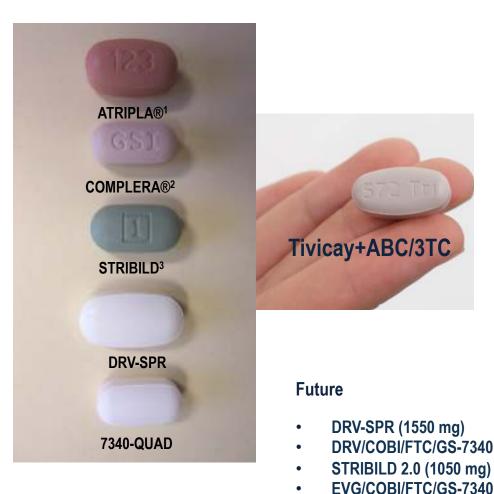
VIIV HEALTHCARE


Shareholders


Developing a sustainable and successful business

Driving Innovation in HIV R&D

2016: ARV HISTORY

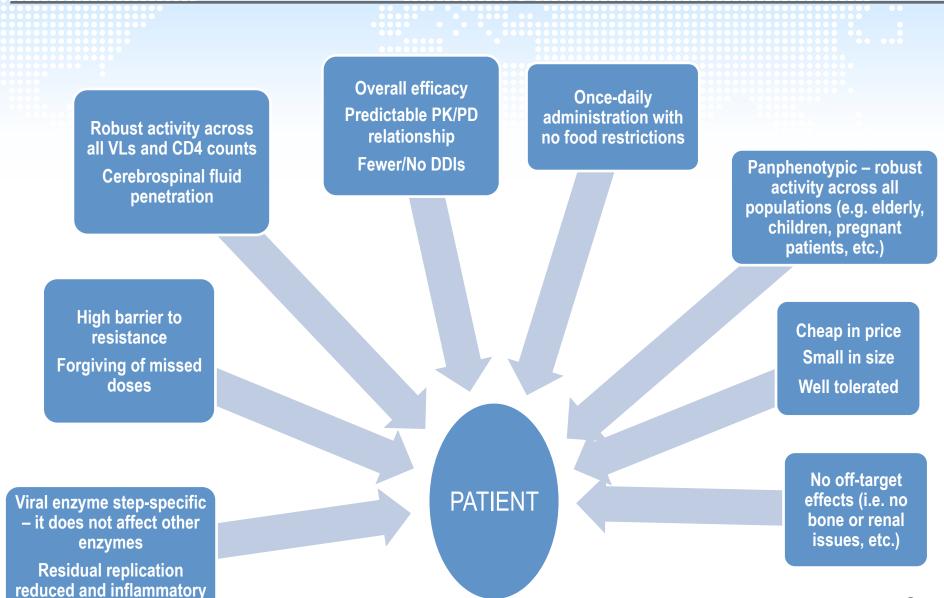


PREFERRED INITIAL REGIMENS FOR ARV-NAÏVE PATIENTS

DHHS ¹ 2015 (Dept. of Health and Human Services)	IAS-USA ² 2014 (International Antiviral Society USA Panel)	(International Antiviral (European AIDS Clinical	
NNRTI-based therapy			
EFV + TDF/FTC	EFV +TDF/FTC	EFV + TDF/FTC	TDF + 3TC (or FTC) + EFV
	EFV+ABC/3TC	RPV ^y + TDF/FTC or ABC/ 3TC	TDF + 3TC (or FTC) + EFV* ₄₀₀
	RPV + TDF/FTC		
Ritonavir-boosted PI-based	therapy		
	ATV/r + TDF/FTC	ATV/r + TDF/FTC or ABC/ 3TC	
DRV/r + TDF/FTC	ATV/r + ABC/3TC	DRV/r + TDF/FTC or ABC/ 3TC	
	DRV/r + TDF/FTC		
INI-based therapy			
RAL + TDF/FTC ELV/c/TDF/FTC	RAL +TDF/FTC ELV/c/TDF/FTC	RAL +TDF/FTC ELV/c/TDF/FTC	DTG + TDF + 3TC or FTC*
DTG + TDF/FTC DTG + ABC/3TC	DTG + TDF/FTC DTG + ABC/3TC	DTG + TDF/FTC DTG + ABC/3TC	

SINGLE PILL REGIMEN

CURRENT

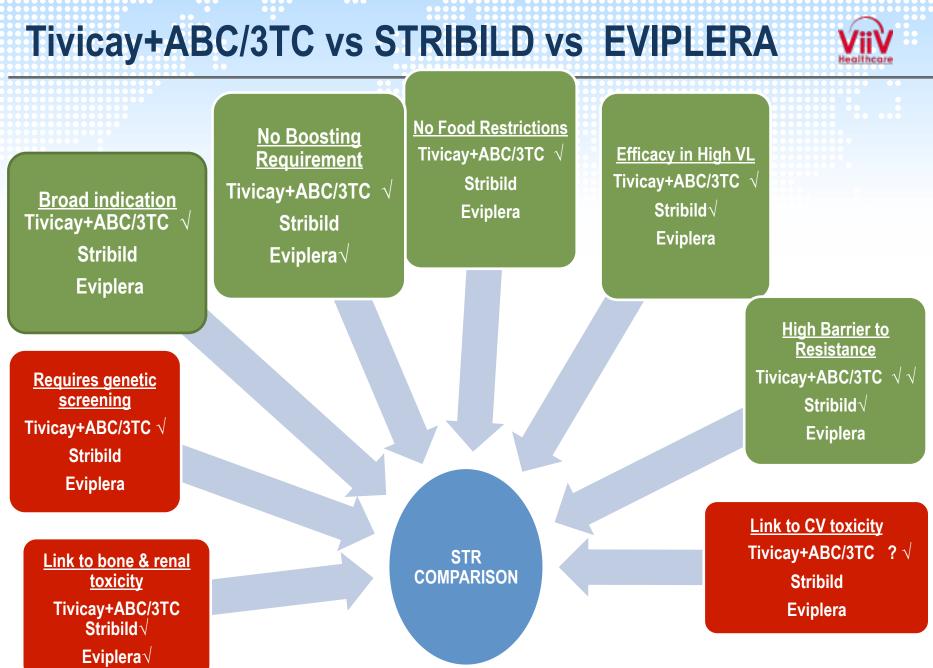

- ATRIPLA[®] (1550 mg): EFV 600 mg; FTC 200 mg; TDF 300 mg
- EDURANT/COMPLERA® (1150 mg): RPV 25 mg; FTC 200 mg; TDF 300 mg
- STRIBILD[®] (1350 mg): EVG 150 mg; COBI 150 mg; FTC 200 mg; TDF 300 mg
- Tivicay+ABC/3TC (950 mg): DTG 50 mg; ABC 600 mg; 3TC 300 mg

Mathias AA, et al. J Acquir Immune Defic Syndr 2007;46:167–73
 Mathias AA, et al. AIDS 2010. Abstract THLBPE17
 German P, et al. J Acquir Immune Defic Syndr 2010;55:323–9

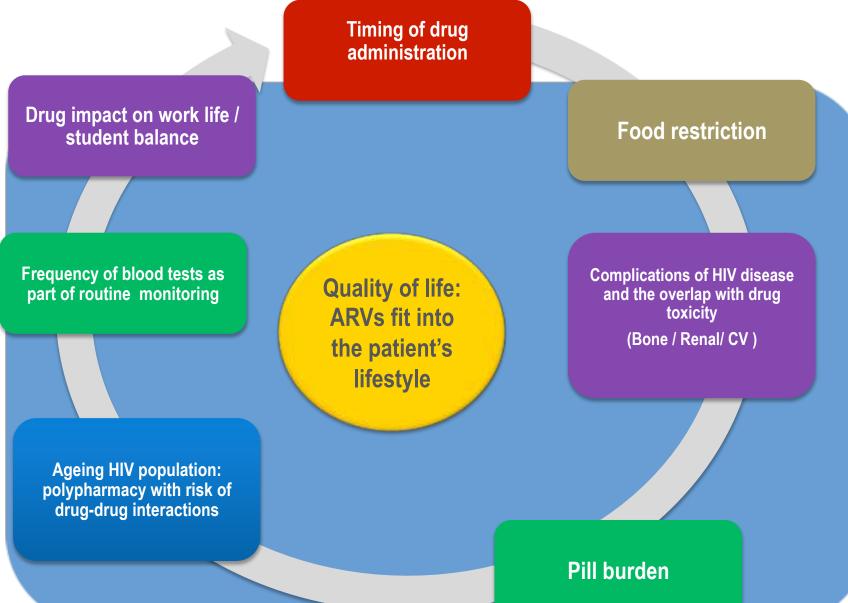
The COMBINATION REGIMEN

markers reduced

COMBINATION REGIMEN COMPARISON


Red, negative trait; green, positive trait; orange, may be positive or negative

	ATRIPLA ¹ ((EFV/FTC/TDF)	EVIPLERA/ COMPLERA ² (RPV/FTC/TDF)	STRIBILD³	Tivicay+ABC/3TC ⁴	TAF-STRIBILD ⁵	TAF+FTC +DRV/ COBI ⁶	TAF+FTC+ RPV ⁷	Generic SPRs?
Broad indication	Yes	No	No	Yes	?	?	?	?
Boosting requirement	No	No	Yes	No	Yes	Yes	No	?
DDIs	Few	Few	Many	Few	Many	Many	Few	?
Food restrictions	Yes	Yes	Yes	No	Yes?	No?	Yes	?
Efficacy in high VL	Yes	No	Yes	Yes	Yes?	Yes?	?	?
Resistance profile – barrier to resistance	Low	Low	Moderate	Probable high?	Moderate*	Probable high?	Low	?
Class cross resistance	Yes	Yes	Yes	No	Yes?	No?	Yes	?
Percentage of Grade 2–4 ADRs reported at 96 wks	Moderate (0–9%)	Low (1–2%)	Moderate (1–16%)	Low (0–3%)	Moderate?	Moderate?	Low	
Effect on lipids	Negative	Positive	Negative	Neutral	Neutral?	Negative?	Negative?	?
Link to CV, bone, renal toxicity	Renal/bone	Renal/bone	Renal/bone	сv	No?	No?	No?	?
Requires additional renal monitoring	No	No	Yes	No	No?	No?	No?	?
Requires screening genetic test	No	No	No	Yes	No	No	No	?
Contains tenofovir	Yes	Yes	Yes	No	No	No	No	?


Table not meant to imply that head-to-head safety and efficacy studies have been conducted. Note: efficacy takes in to account reduction in VL, CD4+ count, duration of response and speed of action (updated on 28 Aug 2014)

Slide based on feedback from advisory boards and internal communications '?' after a characteristic denotes that it is currently unknown, but has been assumed based on available data ADR, adverse drug reaction; CV, cardiovascular; DDI, drug–drug interaction; VL, viral load; TAF, tenofovir alafenamide

1. ATRIPLA Prescribing Information, October 2013; 2. COMPLERA Prescribing Information, June 2014; 3. STRIBILD Prescribing Information, August 2012; 4. TRIUMEQ Prescribing Information, August 2014; 5. Sax PE, et al. ICAAC 2013. Abstract H-146d; 6.

Putting the patient first when choosing a treatment regimen

PATIENTS ARE LIVING LONGER BECAUSE OF ADVANCEMENTS IN ART

The proportion of older HIV-infected individuals is increasing

Proportion of patients **≥50 years** of age in the French Hospital Database on HIV (FHDH ANRS CO4) by year of follow-up¹

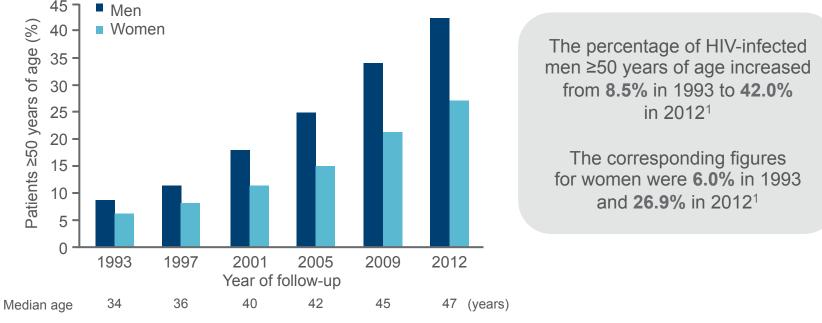
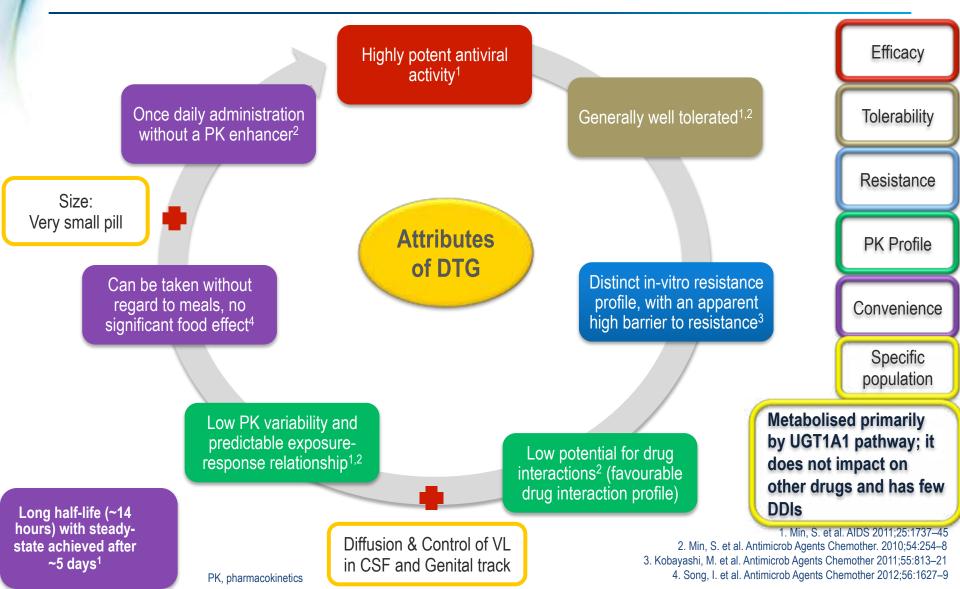


Figure adapted from Costagliola D. Curr Opin HIV AIDS 2014;9:294-301

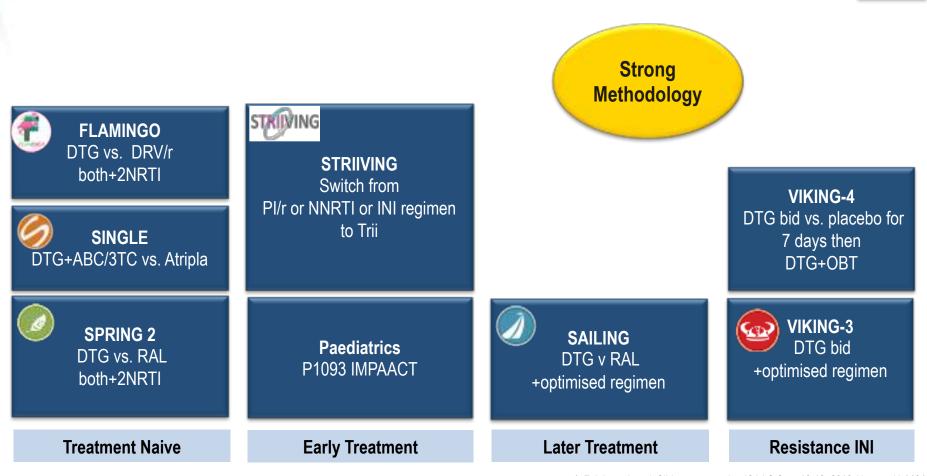
There is a need for a well-tolerated, effective, lifelong therapy with few DDIs

1. Costagliola D. Curr Opin HIV AIDS 2014;9:294-301

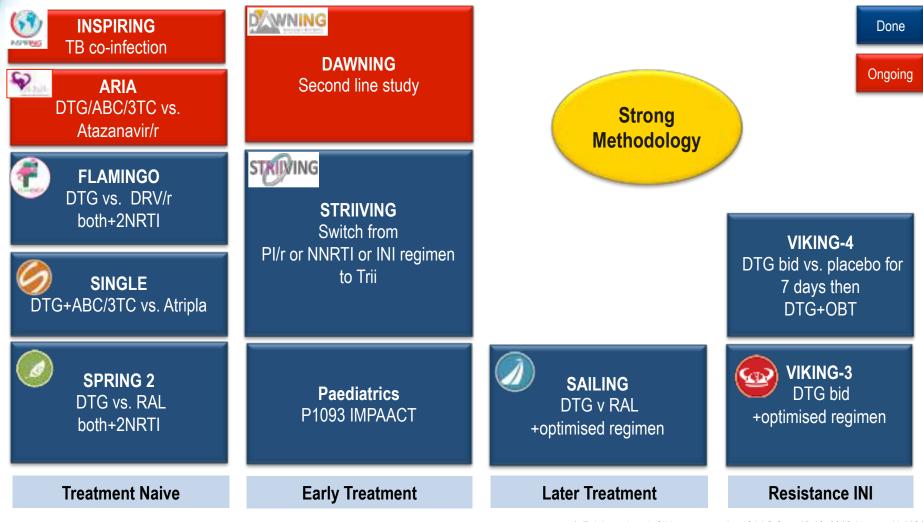
TIVICAY®


(Dolutegravir)

Tivicay is indicated in combination with other anti-retroviral medicinal products for the treatment of Human Immunodeficiency Virus (HIV) infected adults and adolescents above 12 years of age or 40 kg.

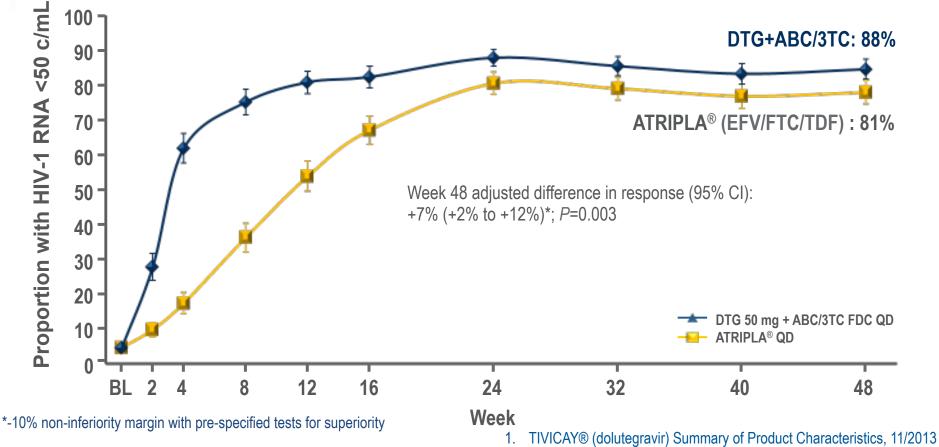

ATTRIBUTES OF DOLUTEGRAVIR

Done


EXTENSIVE CLINICAL PROGRAM WITH MORE THAN 3,500 PATIENTS INCLUDED ACROSS TRIALS

1. Walmsley S, et al. *N Engl J Med* 2013; 369:1807-18 2. Raffi F et al. *Lancet* 2013;381:735–43 3. Raffi F, et al. *Lancet Infect Dis* 2013; 13:927-35 4. Feinberg J et al. Slides presented at ICAAC Sept 10-13, 2013 Abstract H-1464a 5. Cahn P, et al. *Lancet* 2013;382(9893):700-708 6. Nichols G, et al. IAS 2013. Poster TULBPE19

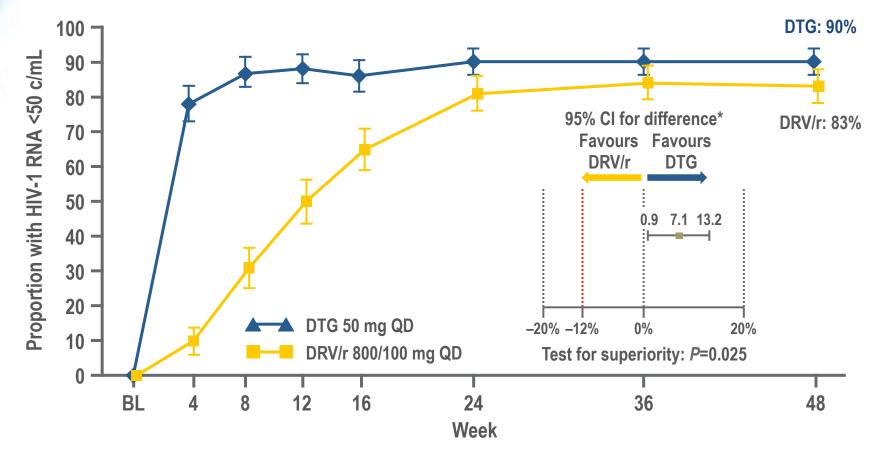
EXTENSIVE CLINICAL PROGRAM WITH MORE THAN 3,500 PATIENTS INCLUDED ACROSS TRIALS



Walmsley S, et al. *N Engl J Med* 2013; 369:1807-18
 Raffi F et al. *Lancet* 2013;381:735–43
 Raffi F, et al. *Lancet Infect Dis* 2013; 13:927-35

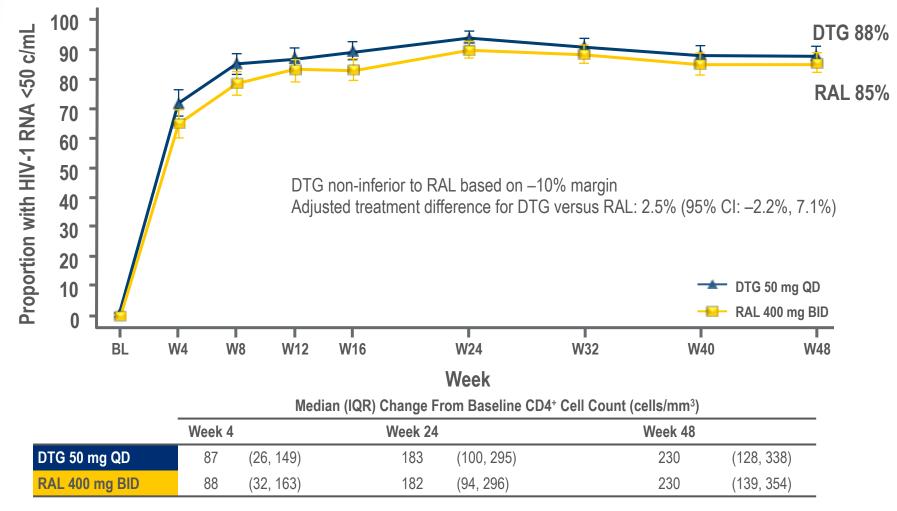
4. Feinberg J et al. Slides presented at ICAAC Sept 10-13, 2013 Abstract H-1464a
5. Cahn P, et al. Lancet 2013;382(9893):700-708
6. Nichols G, et al. IAS 2013. Poster TULBPE19

IN TREATMENT-NAÏVE PATIENTS, DTG + ABC/3TC HAD STATISTICALLY SUPERIOR EFFICACY VS ATRIPLA®


DTG was statistically superior to Atripla[®] at Week 48 Subjects receiving DTG achieved faster virologic suppression than Atripla[®] (*P*<0.0001)^{*1}

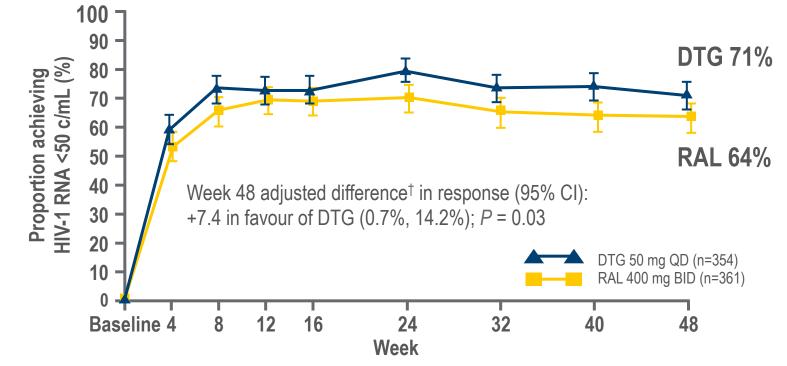
EA/DLG/0004/14n

2. Adapted from Walmsley S, et al. N Engl J Med 2013; 369:1807-18


IN TREATMENT-NAIVE SUBJECTS PATIENTS, DTG HAD STATISTICALLY SUPERIOR EFFICACY VS DRV/r

Results confirmed in per protocol analysis: 91% DTG versus 84% DRV/r

*Adjusted difference (DTG - DRV/r) based on Cochran-Mantel-Haenszel stratified analysis adjusting for baseline HIV-1 RNA and background NRTI therapy Week 48 snapshot analysis EA/DLG/0004/14n Adapted from Feinberg J et al. Slides presented at ICAAC Sept 10-13, 2013 Abstract H-1464a

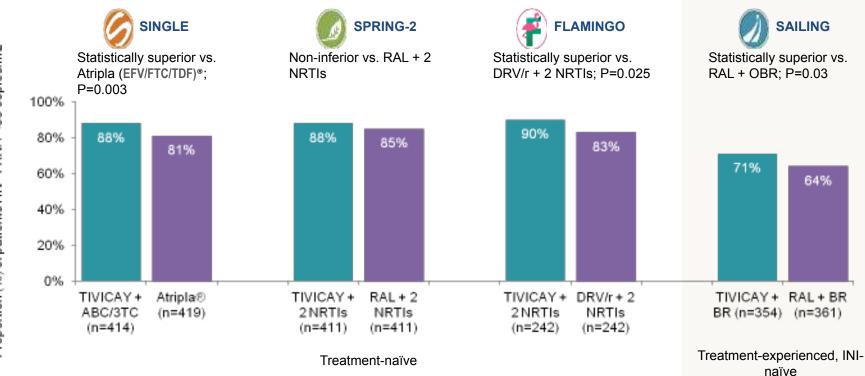

IN TREATMENT-NAÏVE PATIENTS, DTG WAS NON-INFERIOR TO RAL AT 48 WEEKS

1. Raffi F et al. IAS 2012. Abstract THLBB04 2. Adapted from Raffi F et al. Lancet 2013;381:735–43

SPRING

IN TREATMENT-EXPERIENCED, INI-NAÏVE PATIENTS, DTG HAD STATISTICALLY SUPERIOR EFFICACY VS RAL

DTG mg QD was statistically superior to RAL 400 mg BID based on a pre-specified snapshot analysis* (HIV-1 RNA <50 copies / mL) at Week 48 (*P* = 0.03)


Mean (SD) CD4+ change from baseline to Week 48 was similar between arms: DTG: +162 (151) cells/mm³; RAL: +153 (144) cells/mm³

*Analysis based on all subjects randomised who received ≥1 dose of study drug, excluding four subjects at one site with violations of good clinical practice; SD, standard deviation
 [†]Adjusted difference based on stratified analysis adjusting for BL HIV-1 RNA (≤50,000 c/mL vs >50,000 c/mL),
 EA/DLG/0004/14n
 DRV/r use without primary PI mutations and baseline PSS (2 vs <2)
 Adapted from Cahn P, et al. Lancet 2013;382(9893):700-708

Dolutegravir demonstrates superior viral load suppression versus the majority of alternative regimens

 Dolutegravir based treatment regimens have demonstrated superior viral load suppression versus EFV and DRV based regimens in treatment-naïve patients, and versus RAL in treatment-experienced but INI-naïve patients

Primary endpoint results at week 48

Proportion (%) of patients HIV-1 RNA <50 copies/mL

SPRING-2, SINGLE & FLAMINGO: DTG EFFICACY AT WEEK 48 WITH ABC/3TC OR TDF/FTC, ACCORDING TO BASELINE HIV-1 RNA

ABACAVIR AND BASELINE VIRAL LOAD

	SPRING-2 ^{1,2}		SINGLE ²		FLAMINGO ³	
n/N (%)	DTG 50 mg QD + NRTIs*	RAL 400 mg BID + NRTIs*	DTG 50 mg + ABC/3TC QD	EFV/TDF/FTC QD	DTG 50 mg QD + NRTIs*	DRV/r 800/100 mg QD + NRTIs*
≤100,000 copies/mL						
ABC/3TC	115/132 (87)	110/125 (88)	232/280 (90)	_	59/66 (89)	60/68 (88)
TDF/FTC	152/165 (92)	154/170 (91)		238/288 (83)	101/115 (88)	97/113 (86)
>100,000 copies/mL						
ABC/3TC	30/37 (81)	32/39 (82)	111/134 (83)	_	12/13 (92)	8/12 (67)
TDF/FTC	64/77 (83)	55/77 (71)	_	100/131 (76)	45/48 (94)	35/49 (71)

*NRTIs were not randomised but investigator selected

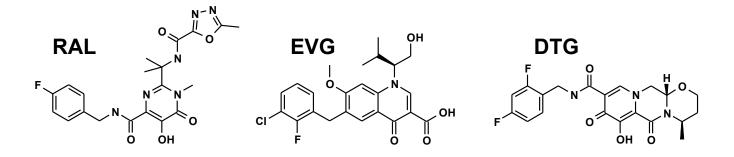
1. Raffi F, et al. Lancet 2013;381:735–43 2.Adapted from Eron Jr, J. et al. HIV11 2012. Abstract P204 3.Adapted from Clotet B, et al. Lancet 2014. Epub ahead of print. Supplementary appendix

THE EFFICACY OF DTG/ABC/3TC IN PATIENTS WITH A HIGH BL VL?

Findings from the SPRING-2,^{1,2} SINGLE^{1,3} and FLAMINGO^{4,5} studies demonstrated that DTG is effective in combination with ABC/3TC irrespective of BL VL

In the DHHS, IAS-USA and EACS guidelines, DTG + ABC/3TC is a recommended initial regimen in ARV-naive patients regardless of BL VL⁶⁻⁸

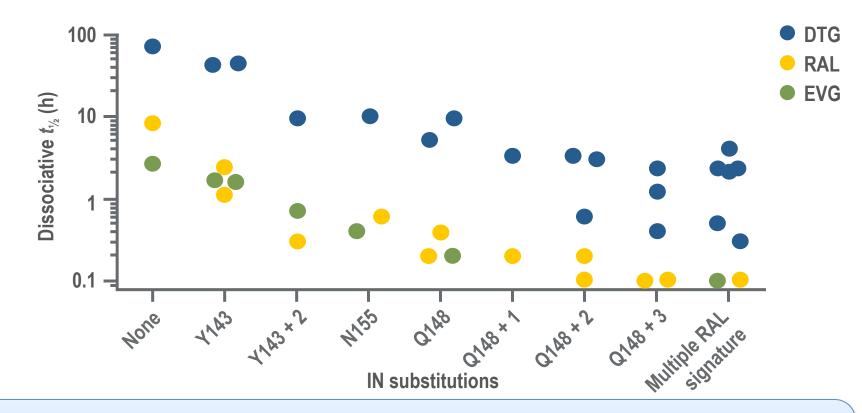
Günthard HF, et al. JAMA 2014;312:410–425;
 DHHS Guidelines for Adults and Adolescents, January 2016;
 European AIDS Clinical Society Guidelines v8.0, October 2015


1.Eron J, et al. HIV11 2012. Poster P204; 2. Raffi F, et al. Lancet Infect Dis 2013;13:927–35; 3. Walmsley S, et al. J Acquir Immune Defic Syndr 2015;70:515–19; 4. Clotet B, et al. Lancet 2014;383:2222–31;

HIGH BARRIER TO RESISTANCE

WHAT MAKES DTG DIFFERENT?

EA/DLG/0004/14n


STRUCTURE-BASED RATIONALE FOR DISSOCIATION PROFILES OF DTG, RAL AND EVG

The structural and electronic characteristics of DTG's metal-binding scaffold may contribute to the slower dissociation kinetics of DTG compared with RAL and EVG

Hightower KE, et al. Antomicrob Agents Chemother 2011;5:4552-9

DTG REMAINED BOUND TO HIV INTEGRASE 8 TIMES LONGER THAN RAL AND 26 TIMES LONGER THAN EVG

- DTG dissociation from IN-DNA complexes was slower compared with RAL and EVG
- The combination of multiple RAL signature substitutions or the accumulation of RAL secondary substitutions were needed to impact on DTG dissociation

DTG DISSOCIATED VERY SLOWLY FROM A WILD TYPE IN-DNA COMPLEX AT 37°C

EA/DLG/0004/14n

NO INI OR NRTI RESISTANCE THROUGH 48 WEEKS WITH DTG

	SPRING-2 ¹		SINGL	E ^{2,3,4}	FLAMINGO ⁵	
n (%)	DTG 50 mg QD (n=411)	RAL 400 mg BID (n=411)	DTG 50 mg +ABC/ 3TC QD (n=414)	ATRIPLA (EFV/FTC/TDF) QD (n=419)	DTG 50 mg (n=234)	DRV/r 800/100 mg QD (n=234)
Subjects with PDVF	20 (5)	28 (7)	18 (4)	17 (4)	2 (<1)	2 (<1)
NRTI-resistant mutations	0	4/19 (21)*	0	1(K65K/R)	0	0
INI-resistant mutations	0	1/18 (6) [†]	0¶	0	0 ^a	0
NNRTI-resistant mutations	-	-	0	4‡	-	-

*One participant had mutation M184M/I; one had mutation A62A/V; and one had mutation M184M/V. † One participant had integrase mutations T97T/A, E138E/D, V151V/I, and N155H and NRTI mutations A62A/V, K65K/R, K70K/E, and M184V

[¶]E157Q/P polymorphism detected with no significant change in IN phenotypic susceptibility [‡]n=1 with K101E, n=1 with K103K/N, n=1 with G190G/A and n=1 with K103N+G190G/A

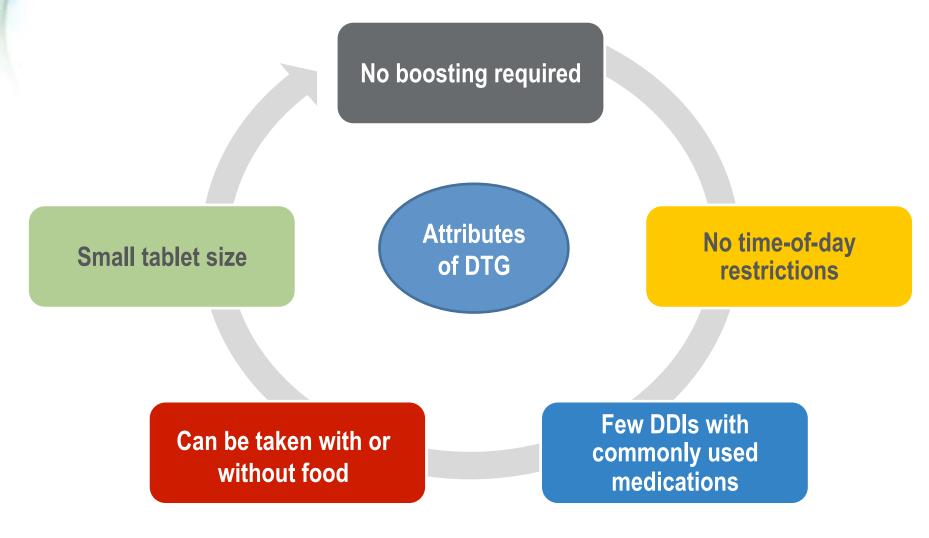
^aOne subject in the DTG treatment group had phenotypic resistance to nelfinavir. This subject had secondary PI resistance mutations L10V, I13V, K20R, E35D, M36I, I62I/V, L63T and L89M at baseline and at PDVF 1. Adapted from Raffi F, et al. *Lancet* 2013;381:735–43 2. Adapted from Walmsley S, et al. *N Engl J Med* 2013; 369:1807-18 3. Walmsley S, et al. 52nd ICAAC. 9-12 Sept 2012. Abstract H-556b PDVF, protocol defined virologic failure EA/DLG/0004/14n 5. Adapted from Feinberg J et al. Slides presented at ICAAC Sept 10-13, 2013 Abstract H-1464a

RESISTANCE PROFILE OF DTG: IN VITRO DTG VIROLOGY STUDIES

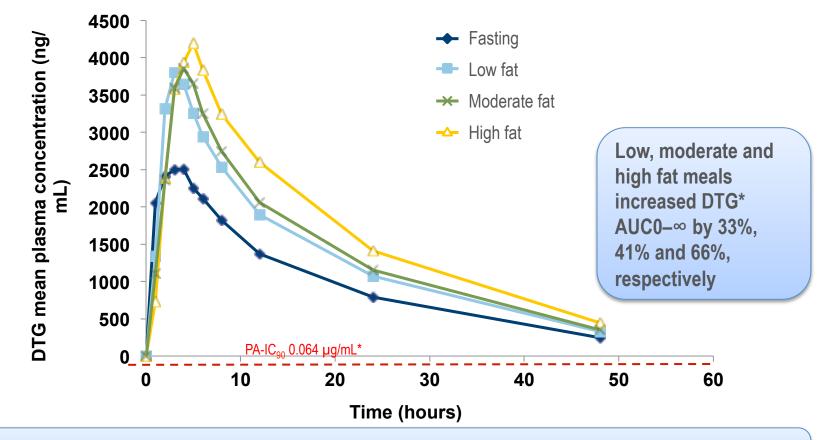
DTG has a distinct in vitro resistance profile compared with RAL or EVG.

DTG demonstrated limited cross-resistance to RAL- and EVG-resistant mutants¹

In vitro experiments support the potential for DTG to have a higher barrier to resistance compared with RAL and EVG^{1,2}


In vitro passage studies showed that DTG leads to a distinct resistance profile, with lower FC compared with RAL and EVG¹⁻³ Highly resistant mutants were not isolated. Only mutations which conferred low FC IC₅₀ \leq 4.1 were identified within the IN-active site¹

DTG showed reduced activity against E138K/Q148K, G140S/Q148R, and Q148R/N155H²


WHAT ABOUT DRUG-DRUG INTERACTION ?

EA/DLG/0004/14n

CONVENIENCE BEYOND ONCE-DAILY DOSING

DTG CAN BE TAKEN WITH OR WITHOUT FOOD

Administration with food increased DTG exposure, but this was not clinically significant and therefore DTG can be taken without regard to meals

*PA-IC₉₀ is the protein-adjusted 90% inhibitory concentration; †Phase III (50 mg) formulation EA/DLG/0004/14n

Adapted from Song I, et al. Antimicrob Agents Chemother 2012;56:1627-9

PK/PD PROFILE OF DTG VERSUS ELVITEGRAVIR AND RALTEGRAVIR

	DTG ^{1–3}	RAL ⁴	EVG ^{5,6}
Clinical dose	50 mg QD (INI-naïve), 50 mg BID (INI-resistant)	400 mg BID	150 mg QD boosted (quad pill)
t _{1/2}	~14 hours	~9 hours	~12.9 hours (boosted)
PK variability	Low to moderate	High	Low (with boosting)
Food effect	Can be taken with or without food	No food restriction, but fat content affects absorption and increases PK variability	Taken with food
Protein binding	High: 99.5–99.7%	Moderate: 83%	High: 98–99%
Metabolism and excretion	UGT1A1 (major), CYP3A (minor), renal elimination <1%	UGT1A1, renal elimination ~9%	CYP3A (major), UGT1A1/3 (minor), renal elimination 6.7%
PK/PD relationship	Yes, C _{trough} -driven efficacy	No	Yes, C _{trough} -driven efficacy

DTG has a favourable PK/PD profile compared with other INIs, including EVG and RAL

TIVICAY (dolutegravir) Summary of Product Characteristics, 11/2013
 2. Min S, et al. Antimicrob Agents Chemother 2010;54:254–8
 3. Min S, et al. AIDS 2011;25:1737–45; 4. Isentress prescribing information (April 2013)
 5. Stribild prescribing information (August 2012); 6. Ramanathan S, et al. Clin Pharmacokinet 2011;50:229–44

DTG HAS FEW INTERACTIONS WITH COMMONLY USED MEDICATIONS^{1,2,3}

Commonly used medications	Dose adjustment required	• DTC and defatilide
Oral contraceptives	No	 DTG and dofetilide co-administration
Proton pump inhibitors	No	contraindicated du
H ₂ antagonists (including cimetidine, famotidine, nizatidine, ranitidine)	No	to potential life- threatening toxicity
Methadone	No	caused by high dofetilide
Hepatitis B transcriptase inhibitor (adefovir)	No*	concentration
Hepatitis C protease inhibitors (telaprevir, boceprevir)	No	
Antidepressants	No*	 DTG is not primarily
Statins	No*	metabolised via th
Rifampicin	Dose DTG 50 mg BID Avoid in INI-class resistance	CYP450 pathway ¹
Magnesium/aluminium-containing antacids Calcium and iron supplements Multivitamins	Dose separate DTG 2 hours before or 6 hours after these medicines	List is not complete, and for further information
EFV, NVP, and TPV/r	Dose DTG 50 mg BID Avoid in INI-class resistance	the TIVICAY SmP should be consulted
ETV	Must only be used in combination with ATV/r, DRV/ r or LPV/r at a dose of 50 mg QD	

[†] DTG is metabolised by the UGT1A1 pathway

^{3.} Teixeira R et al. Braz J Infect Dis 2013;17(2):194-204)

WHAT ABOUT TOLERABILITY ?

EA/DLG/0004/14n

TREATMENT-RELATED ADVERSE EVENTS OVER 144 WEEKS

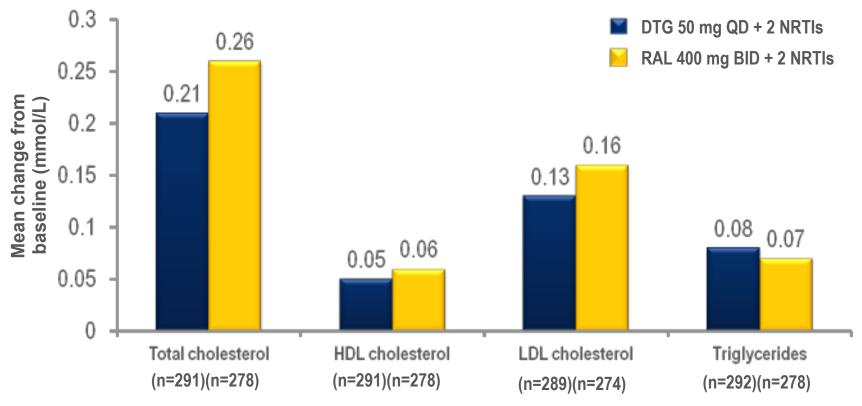
		DTG + ABC/3TC 50 mg QD (N=414)		/FTC QD 419)
Adverse event*	Week 96 (%)	Week 96 (%) ∆Week 144		Δ Week 144
Any	44	+1	67	+1.2
Dizziness	7	+0	33	+0.2
Abnormal dreams	7	+0	16	+0.2
Nausea	11	+0.2	12	+0
Insomnia	10	+0	6	+0.7
Diarrhoea	6	+0	8	+0
Fatigue	7	+0	7	+0
Headache	6	+0	7	+0
Rash	<1	+0	8	+0

EA/DLG/0004/14n

* Reported in ≥5% of subjects in either treatment group

Adapted from Pappa K, et al. ICAAC 2014. Abstract H-647a

MOST COMMON CLINICAL ADVERSE EVENTS TO WEEK 96

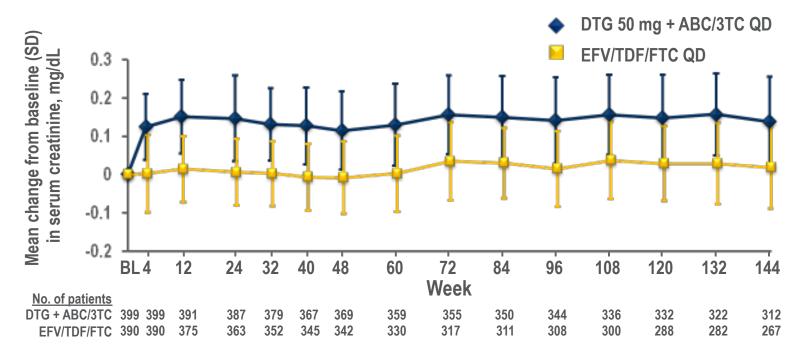

AEs, n (%)	DTG 50 mg QD (N=411)	RAL 400 mg BID (N=411)	
WEEK 48 ^{1,2}			
Any event	339 (82)	340 (83)	
Nausea	59 (14)	53 (13)	
Headache	51 (12)	48 (12)	
Nasopharyngitis	46 (11)	48 (12)	
Diarrhoea	47 (11)	47 (11)	
WEEK 96 ³			
Any event	349 (85)	349 (85)	
Nausea	60 (15)	56 (14)	
Nasopharyngitis	55 (13)	58 (14)	
Diarrhoea	57 (14)	55 (13)	
Headache	56 (14)	55 (13)	

Adapted from Raffi F, et al. IAS 2012. Abstract THLBB04
 Adapted from Raffi F, et al. Lancet 2013;381:735–43
 Adapted from Raffi F, et al. Lancet Infect Dis 2013;13:927–35; Supplementary appendix

DTG HAD A LIPID-NEUTRAL PROFILE

No evidence of clinically significant impact on lipid profile (i.e. total cholesterol, HDL cholesterol, LDL cholesterol or triglycerides) at 96 weeks¹

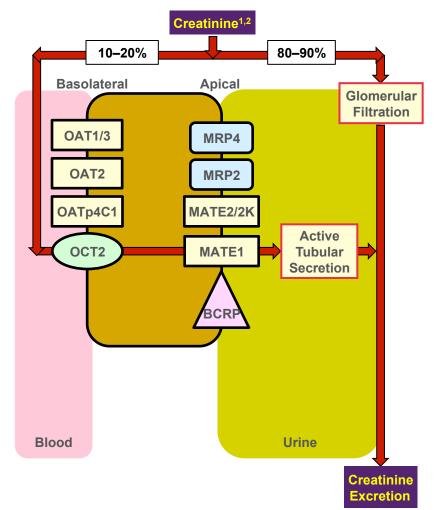
Median changes at Week 48 in mmol/L: Total cholesterol, DTG, +0.18 mmol/L, RAL +0.23 mmol/L; Triglycerides, DTG +0.10 mmol/L, RAL +0.10mmol/L IQR, interquartile range


1. Raffi F, et al. Lancet Infect Dis 2013; 13:927-35 2. Data on file. UK/DLG/0028/13.01/11/13

EA/DLG/0004/14n

RENAL SAFETY OF DTG

EA/DLG/0004/14n


CHANGE FROM BASELINE TO 144 WEEKS SINGLE IN RENAL PARAMETERS

	DT(G + ABC/3TC	QD	El	FV/TDF/FTC (2D
Parameter	Week 48	Week 96	Week 144	Week 48	Week 96	Week 144
Urine albumin/creatinine ratio (mg/mmol)	0	0	0	0.05	0.05	0.10
Median change (IQR)	(-0.3, -0.3)	(-0.3, 0.2)	(-0.4, 0.2)	(-0.2, 0.3)	(-0.2, 0.3)	(-0.2, 0.4)

DRUGS THAT INTERFERE WITH CREATININE TUBULAR TRANSPORTERS

- In addition to glomerular filtration, creatinine is excreted into urine by active secretion (10–20%) in the proximal renal tubules
- OCT2 on the basolateral membrane is responsible for creatinine influx
 - Drugs that inhibit OCT2 include
 DTG and rilpivirine
- MATE1 on the apical membrane is responsible for creatinine efflux
 - Drugs that inhibit MATE1 include cimetidine, cobicistat, trimethoprim, ritonavir, and DTG

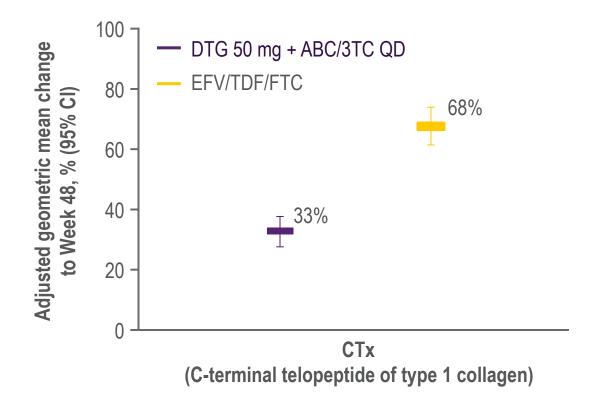
41

Shemesh O et al. Kidney Int 1985;28:830-838; Sato T et al. Biochem Pharmacol 2008;76:894-903; Mills A et al. ICAAC 2011 Abstract H2-794c; Lepist EI et al. ICAAC 2011. Abstract A1-1724; Yombi JC et al. AIDS 2014;28:621-632

RENAL SAFETY OF DTG: SUMMARY

The effect of DTG on serum creatinine is not clinically relevant

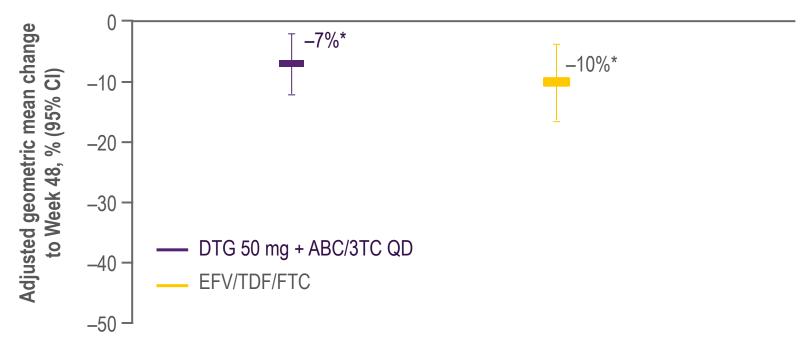
- DTG inhibits OCT2,¹ but without affecting glomerular filtration²
 - this is similar to other drugs such as trimethoprim or cimetidine
 - these drugs decrease tubular secretion of creatinine and therefore increase concentrations of serum creatinine without affecting glomerular filtration
- In Phase III trials, a small initial increase in creatinine was observed with DTG, due to this blockade of creatinine secretion^{3–5}
 - on patients discontinued treatment in Phase III trials because of a renal AE


Koteff J, et al. ICAAC 2011. Abstract A1–1728
 Koteff J et al. *Br J Clin Pharmacol*. 2013;75(4):990-996
 Raffi F, et al. *Lancet* 2013;381:735–43]
 Walmsley S, et al. *N Engl J Med* 2013; 369:1807-18
 Feinberg J et al. Slides presented at ICAAC Sept 10-13, 2013 Abstract H-1464a

48 WEEK BONE MARKER CHANGES IN DOLUTEGRAVIR (GSK1349572) PLUS ABACAVIR/LAMIVUDINE VERSUS TENOFOVIR/EMTRICITABINE/EFAVIRENZ: THE SINGLE TRIAL

P Tebas,¹ P Kumar,² C Hicks,³ C Granier,⁴ B Wynne,⁵ K Pappa,⁶ S Min⁶

¹University of Pennsylvania, Philadelphia, PA, USA; ²Georgetown University School of Medicine, Washington, DC, USA; ³Duke University Medical Center, Durham, NC, USA; ⁴⁻⁶GlaxoSmithKline, ⁴London, UK; ⁵Philadelphia, PA, USA; ⁶Research Triangle Park, NC, USA


PERCENT CHANGE FROM BASELINESING[]AT WEEK 48 IN BONE RESORPTION BIOMARKERS

Differences between treatment groups was significant (p<0.001)

PERCENT CHANGE FROM BASELINE SIM

Vitamin D (25-hydroxy-vitamin D)

Differences between treatment groups are not significant (p<0.001)

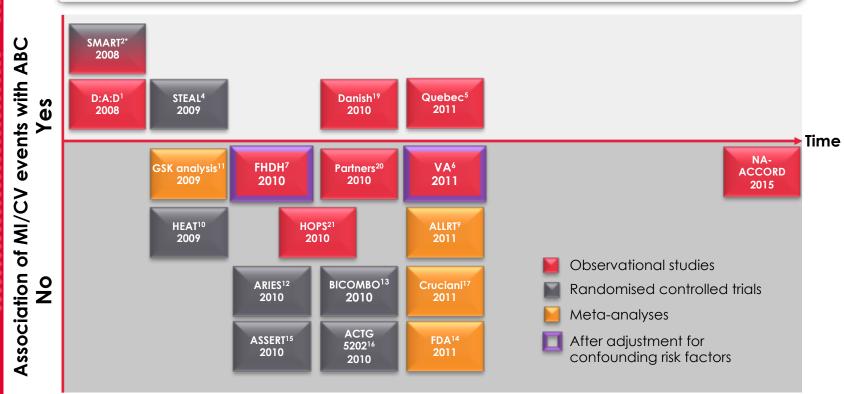
CONVENIENCE BEYOND ONCE-DAILY DOSING

Challenge	Characteristics of DTG
Equivalent or statistically superior efficacy	DTG delivers rapid and sustained efficacy
Drug resistance	DTG has a high barrier to resistance
Tolerability	DTG is well tolerated with few discontinuations
Convenience	Small tablet size Can be taken with or without food No time-of-day restrictions No boosting required Few DDIs with commonly used medications
 Walmsley S, et al. N Engl J Med 2013; 369:1807 Raffi F et al. Lancet 2013;381:735–43 Raffi F, et al. Lancet Infect Dis 2013; 13:927-35 	 4. Feinberg J et al. Slides presented at ICAAC Sept 10-13, 2013 Abstract H-1464a EA/DLG/0004/14n 5. Cahn P, et al. Lancet 2013;382(9893):700-708

ABACAVIR: HLA-B*5701 CARRIAGE & RISK OF MI

Warning Regarding Abacavir and Risk of Myocardial Infarction

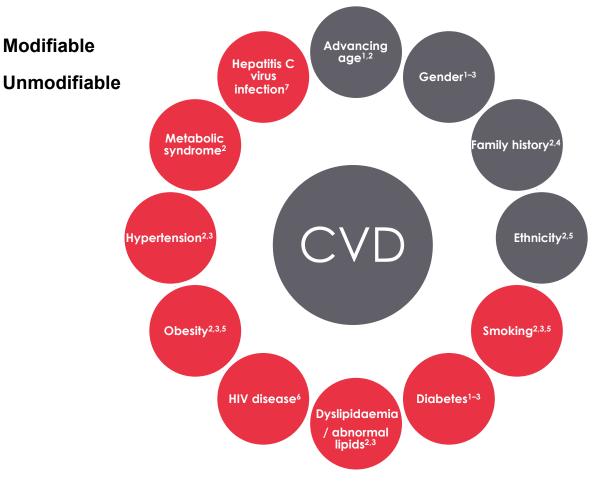
Section 4.4: Myocardial infarction


Observational studies have shown an association between myocardial infarction and the use of abacavir. Overall the available data from observational cohorts and from randomised trials show some inconsistency so can neither confirm nor refute a causal relationship between abacavir treatment and the risk of myocardial infarction.

To date, there is no established biological mechanism to explain a potential increase in risk. When prescribing Kivexa, action should be taken to try to minimise all modifiable risk factors (e.g. smoking, hypertension and hyperlipidaemia)

Conflicting Evidence on Risk of Myocardial Infarction (MI) / Cardiovascular (CV) Events Associated with Abacavir (ABC) Treatment

Studies measured either myocardial infarction (MI) risk or cardiovascular (CV) event risk: No consistent endpoint assessed across all studies



Dates represent publication or presentation at a major congress. *Observational substudy of SMART RCT.

Healthcare

Sabin CA et al. Lancet 2008;371:1417–26; 2. SMART Study Group. AIDS 2008;22:F17–F24; 3. Worm SW et al. J Infect Dis 2010;201:318–30;
 Martin A et al. CID 2009; 49:1591–1601; 5. Durand M et al. JAIDS 2011;57:245–53; 6.Bedimo RJ et al. Clin Infect Dis 2011;53:84–91;
 Lang S et al. Arch Intern Med 2010;170:1228–38; 8. Sabin CA et al. 21st CROI, 2014; Abstract 747LB;
 Ribaudo HJ et al. Clin Infect Dis 2011;52:929–40; 10. Smith KY et al. AIDS 2009;23:1547–56; 11. Brothers CH et al. JAIDS 2009;51;20–8;
 Squires K et al. AIDS 2010;24:2019–27; 13. Martinez E et al. AIDS 2010;24:F1–F9; 14. Ding X et al. JAIDS 2012;61:441–7;
 Moyle G et al. Antivir Ther 2013;18:905–13; 16. Sax P et al. J Infect Dis 2011;204:1191–201; 17. Cruciani M et al. AIDS 2011;25:1289–98; 19. Obel N et al. HIV Med 2010;11:130–6; 20. Triant V et al. JAIDS 2010;55:615–9;
 Lichtenstein K et al. Clin Infect Dis 2010;51:435–47.

 Booth GL et al. Lancet 2006;368:29–36; 2. WHO CVD Guidelines. Available at http://www.who.int/cardiovascular_diseases/guidelines/Full%20text.pdf (accessed Sept 2014); 3. Yusuf S et al. Lancet 2004; 364: 937–52;
 Hunt SC et al. Am J Prev Med 2003;24:136–142; 5. NICE CVD Guidelines 2010. Available at: http://www.nice.org.uk/guidance/ph25;
 Hunt SC et al. Am J Prev Med 2003;24:136–142; 5. NICE CVD Guidelines 2010. Available at: http://www.nice.org.uk/guidance/ph25;
 Klein D et al. 18th CROI, 2011; Abstract 810; 7. Butt AA et al. Clin Infect Dis 2009; 49:225–232.

<u>Results</u>: Cardiovascular Biomarkers After Switching to ABC/DTG/3TC

- Multivariate analysis of change from baseline showed statistically greater declines in sCD14 levels in men and non-white persons
- In a sensitivity analysis using a model that also adjusted for BMI, patients with BMIs ≥25 kg/m² saw slightly larger declines in sCD14 and I-FABP levels

Model, including baseline BMI	Adjusted geometric mean change*100 (%)	Adjusted geometric mean ratio; 95% Cl for ratio	P value
I-FABP (ng/L)	109/		0.078
<25 kg/m² ≥25 kg/m²	-10% -20%	1.12 (0.99; 1.26)	
sCD14 (ng/L)	100/		0.031
<25 kg/m² ≥25 kg/m²	-19% -22%	1.05 (1.00; 1.09)	

Percent Change From Baseline in I-FABP and sCD14 by BMI

Lake et al. CROI 2016; Boston, MA. Poster 660.

23rd Conference on Retroviruses and Opportunistic Infections; February 22-25, 2016; Boston, MA

ASSOCIATION BETWEEN ABC USE AND MI RISK

Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents

Downloaded from http://aidsinfo.nih.gov/guidelines on 4/8/2015

Visit the AIDSinfo website to access the most up-to-date guideline.

Adverse Effects:

Hypersensitivity Reactions:

 Clinically suspected hypersensitivity reactions (HSRs) were observed in 5% to 8% of individuals who started ABC in clinical trials conducted before the use of HLA-B*5701 testing. The risk of HSRs is highly associated with the presence of the HLA-B*5701 allele.^{15,16} HLA-B*5701 testing should precede use of ABC. ABC should not be given to patients who test positive for HLA-B*5701 and based on a positive test result, ABC hypersensitivity should be noted on a patient's allergy list. Patients who are HLA-B*5701 negative are far less likely to experience an HSR, but they should be counseled about the symptoms of the reaction. Patients who discontinue ABC because of a suspected HSR should never be re-challenged, regardless of their HLA-B*5701 status.

Cardiovascular Risk:

- An association between ABC use and myocardial infarction (MI) was first reported in the D:A:D study. This large, multinational observational study group found that recent (within 6 months) or current use of ABC was associated with an increased risk of MI, particularly in participants with pre-existing cardiac risk factors.^{17,18}
- Since the D:A:D report, several studies have evaluated the relationship between ABC therapy and cardiovascular events. Some studies have found an association;¹⁹⁻²² others, including an FDA metaanalysis of 26 randomized clinical trials that evaluated ABC, have not.²³⁻²⁷
- No consensus has been reached on the association between ABC use and MI risk or the mechanism for such an association

Panel's Recommendations:

- ABC should only be prescribed for patients who are HLA B*5701 negative.
- On the basis of clinical trial safety and efficacy data, experience in clinical practice, and the availability
 of ABC/3TC as a component of co-formulated products, the Panel classifies ABC/3TC plus DTG as a
 Recommended regimen (AI) (see discussion regarding DTG in this section regarding the clinical efficacy
 data for ABC/3TC plus DTG).

What's New in the Guidelines? (Last updated April 8, 2015; last reviewed April 8, 2015)

Revisions to the May 1, 2014, version of the guidelines include key updates to several existing sections and the addition of two new tables. Significant updates are highlighted throughout the document.

Key Updates

The following are key updates to existing sections of the guidelines.

What to Start: Initial Combination Regimens for the Antiretroviral-Naive Patient

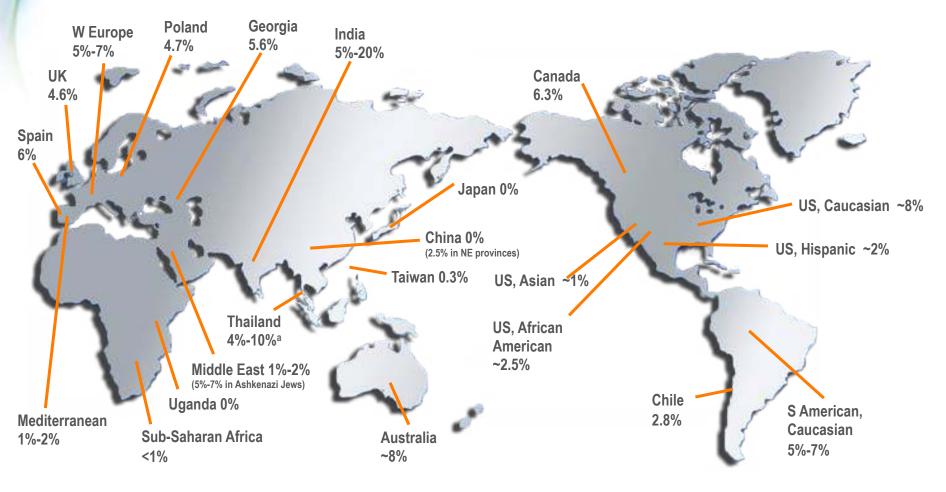
Since the last version of these guidelines, data from clinical trials and cohort studies, as well as experience in clinical practice, have prompted significant changes to the list of Recommended, Alternative, and Other regimens for treatment-naive patients (<u>Table 6</u>). Additionally, a new table, titled "Antiretroviral (ARV) Regimen Considerations as Initial Therapy Based on Specific Clinical Scenarios," has been created to guide clinicians on the selection of an initial ARV regimen based on specific clinical scenarios and ARV-related considerations (<u>Table 7</u>).

There are now five Recommended regimens for antiretroviral therapy (ART)-naive patients—four
integrase strand transfer inhibitor (INSTI)-based regimens and one ritonavir-boosted protease inhibitor
(PI/r)-based regimen, as listed below:

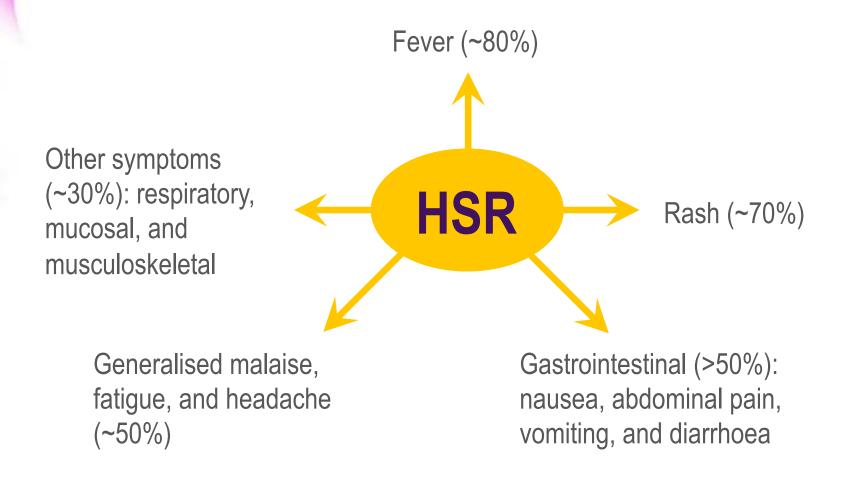
INSTI-Based Regimens:

- Dolutegravir/abacavir/lamivudine (DTG/ABC/3TC)—only for patients who are HLA-B*5701 negative (AI)
- · DTG plus tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) (AI)
- Elvitegravir/cobicistat/TDF/FTC (EVG/c/TDF/FTC)—only for patients with pre-ART CrC1>70 mL/min (AI)
- · Raltegravir (RAL) plus TDF/FTC (AI)

ABC and MI ViiV Healthcare


- ViiV Healthcare continually monitors and reviews the most recent and historical data regarding ABC and MI. Although a link between ABC and increased risk of MI cannot be specifically disproven, the majority of recent RCT data, cohort analyses that control for known risk factors and mechanistic data have not supported an association. However, these studies were not prospectively designed to measure risk of MI
- When looking at data regarding MI risk, healthcare providers should take into consideration all data – RCTs cohorts and biomarker studies – and recognise the advantages and limitations of each

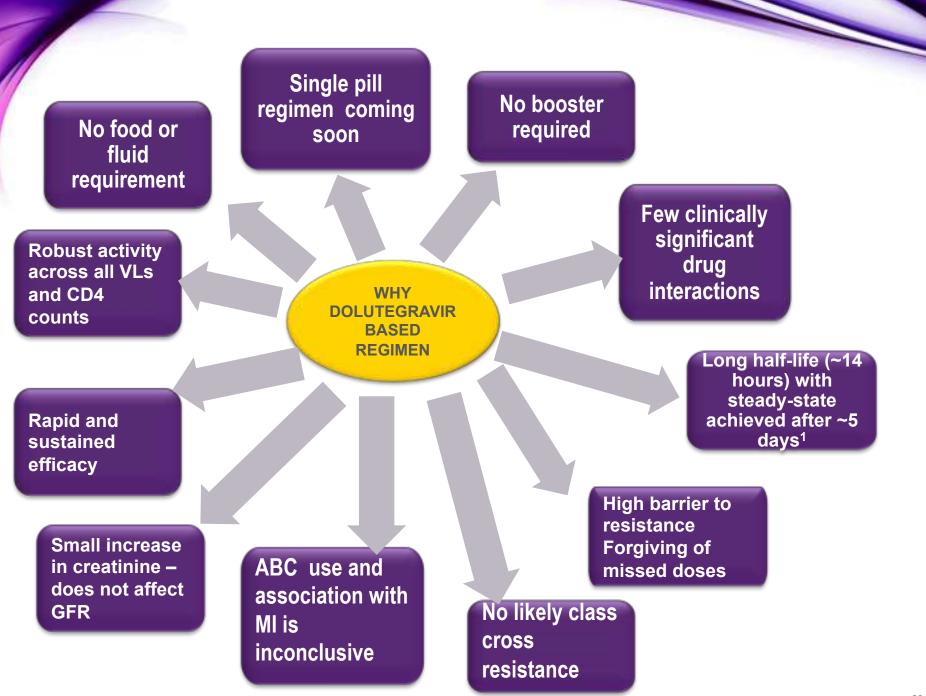
ABC USE AND HLA-B*5701 CARRIAGE


EA/DLG/0004/14n

HLA-B*5701 CARRIAGE FREQUENCY¹⁻⁹

- a Thailand B*57 carriage: Thai Dai Lue (NE Thai), ~11%; Urban Bangkok, 3.6%; Southern Thai Muslim, 3%.
- 1. Nolan et al. J HIV Ther. 2003;8:36-41. 2. Lalonde et al. Tissue Antigens. 2010;75:12-18. 3. Poggi et al. Braz J Infect Dis. 2010;14:510-512. 4. Dvali et al. Georgian Med News. 2010;12:16-20. 5. Parczewski et al. HIV Med. 2010;11:345-348. 6. Arrizabalaga et al. HIV Clin Trials. 2009;10:48-51. 7. Sun et al. J Antimicrob Chemother. 2007;60:599-604. 8. Munderi et al. Trop Med Int Health. 2011;16:200-204. 9. Orkin et al. HIV Med. 2010;11:187-192.

HYPERSENSITIVITY TO ABC IS A MULTI-ORGAN CLINICAL SYNDROME USUALLY CHARACTERISED BY A SIGN OR SYMPTOM IN TWO OR MORE OF THE FOLLOWING GROUPS

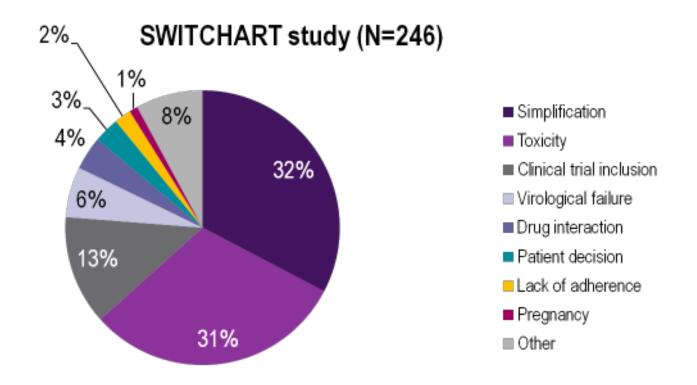

Q: WHAT IS THE RISK OF HYPERSENSITIVITY REACTION TO ABC WITH DTG/ABC/3TC?

A: Patients receiving any regimen containing ABC should be screened for the HLA-B*5701 allele to assess for risk of potential hypersensitivity reactions^{1,2}

From the Phase IIb and III clinical programme, the rate of hypersensitivity reaction with DTG+ABC/3TC is <1% and is similar to the rates seen in comparator arms. All subjects in these trials were HLA-B*5701 negative^{3–8}

If a suspected hypersensitivity reaction occurs with DTG/ABC/3TC, discontinue the entire regimen immediately and NEVER restart DTG/ABC/3TC or any other DTG- or ABC-containing regimen^{1,2}

KIVEXA EU Summary of Product Characteristics, January 2016
 TRIUMEQ EU Summary of Product Characteristics, January 2016
 Stellbrink H-J, et al. AIDS 2013;27:1771–78; 4. Raffi F, et al. Lancet 2013;381:735–43
 Walmsley S, et al. N Engl J Med 2013;369:1807–18;
 Walmsley S, et al. J Acquir Immune Defic Syndr 2015;70:515–9
 Clotet B, et al. Lancet 2014;383:2222–31
 Molina JM, et al. Lancet HIV 2015;2:e127–36. Suppl. appendix



PREFERRED INITIAL REGIMENS FOR ARV-NAÏVE PATIENTS

DHHS ¹ 2015 (Dept. of Health and Human Services)	IAS-USA ² 2014 (International Antiviral Society USA Panel)	EACS ³ 2015 (European AIDS Clinical Society)	WHO ⁴ 2015 (World Health Organization)	
NNRTI-based therapy				
EFV + TDF/FTC	EFV +TDF/FTC	EFV + TDF/FTC	TDF + 3TC (or FTC) + EFV	
	EFV+ABC/3TC	RPV ^y + TDF/FTC or ABC/ 3TC	TDF + 3TC (or FTC) + EFV* ₄₀₀	
	RPV + TDF/FTC			
Ritonavir-boosted PI-based	therapy			
	ATV/r + TDF/FTC	ATV/r + TDF/FTC or ABC/ 3TC		
DRV/r + TDF/FTC	ATV/r + ABC/3TC	DRV/r + TDF/FTC or ABC/ 3TC		
	DRV/r + TDF/FTC			
INI-based therapy				
RAL + TDF/FTC ELV/c/TDF/FTC	RAL +TDF/FTC ELV/c/TDF/FTC	RAL +TDF/FTC ELV/c/TDF/FTC	DTG + TDF + 3TC or FTC*	
DTG + TDF/FTC DTG + ABC/3TC	DTG + TDF/FTC DTG + ABC/3TC	DTG + TDF/FTC DTG + ABC/3TC		

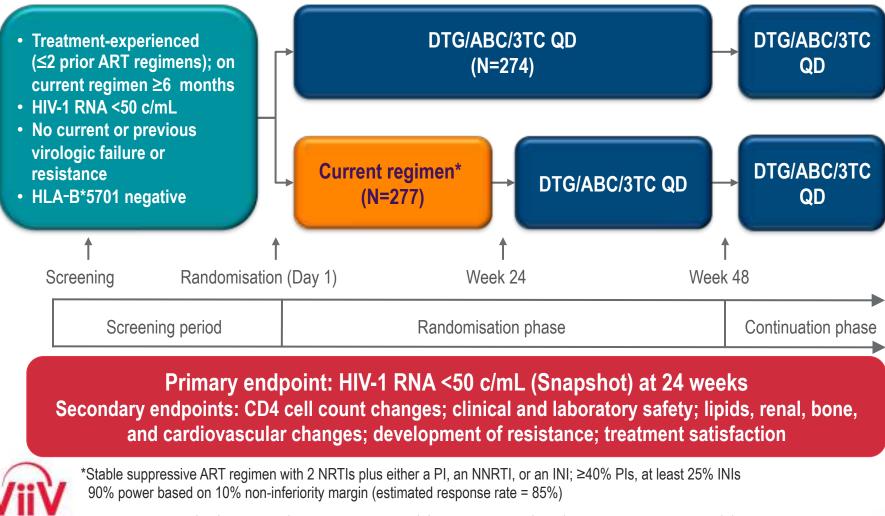
STRIIVING STUDY – SWITCH STUDY

MAIN REASONS FOR SWITCHING ART ARE SIMPLIFICATION AND TOXICITY

Renal (25%) and CNS (18%) toxicities were the main reasons for ART switch, followed by diarrhoea (16%), liver enzyme elevation (ALT 10%; AST 9%; bilirubin 7%), lipid elevation (cholesterol 5%; triglycerides 8%), nausea (7%) and other (5%)

SUPPORTING DATA

SWITCHING: THE CASE FOR DOLUTEGRAVIR

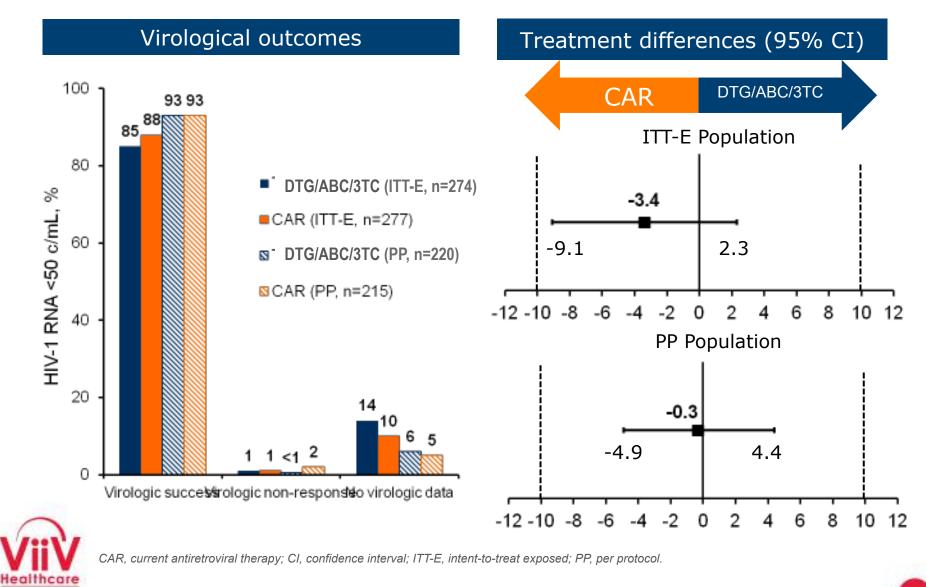

Efficacious	Well tolerated	"Forgiving"	High barrier to resistance	Few drug interactions	Convenient
•Phase 3 comparisons against NNRTI, PI/r and INSTI	•Few discontinuations for AEs and no apparent signature toxicities	 High inhibitory quotient Long plasma half-life (~14 h); long binding half-life to wild- type HIV-1 integrase (~71 h) Wide exposure window for antiviral effect; low inter-patient PK variability 	•No treatment emergent resistance to DTG or its NRTI backbone in any clinical study in INSTI-naïve patients to date	 No booster Primarily metabolised through UGT 1A1: little or no CYP450- mediated interaction 	 Low dose (50 mg) and small tablet No food or timing requirements Available as a single-tablet regimen with ABC/3TC^a

7. Llibre JM, et al. AIDS Rev 2015;17:56-64; 8. Tivicay EU SmPC; 9. Triumeg EU SmPC.

^{1.} Walmsley SL, et al. N Engl J Med 2013;369:1807-18; 2. Walmsley S, et al. JAIDS 2015; Aug 9 (E-pub ahead of print); 3. Raffi F et al. Lancet Infect Dis 2013;13:927-35; 4. Molina JM, et al. Lancet HIV 2015; 2(4): e127-e136; 5. van Lunzen J, et al. Lancet Infect Dis 2012;12:111–8; 6. Min S, et al. AIDS 2011;25:1737–45;

STRIIVING study design

Countries: US, Canada, Puerto Rico



ART, antiretroviral; c/mL, copies/mL; INI, integrase inhibitor; NRTIs, nucleoside reverse transcriptase inhibitors; PI, protease inhibitor; VL, viral load.

Trottier B, et al. Presented at ICAAC, 17-21 September 2015, San Diego.

Healthcare

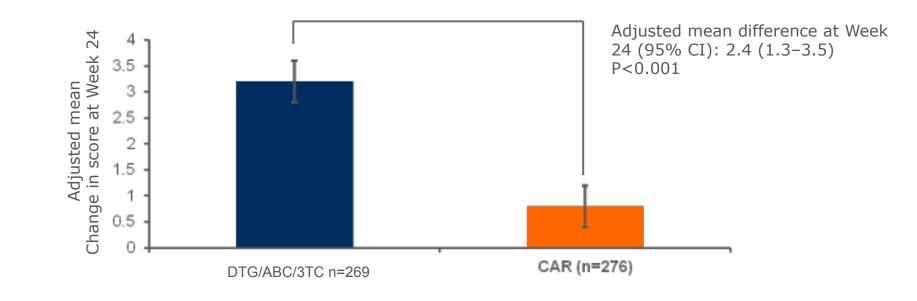
STRIIVING: snapshot outcomes at week 24 (ITT-E and PP populations)

STRIIVING: virological endpoints

• No subjects met protocol-defined virological failure in either study arm

	DTG/ABC/3TC (n=274)	CAR (n=277)
PDVF	0	0
VL ≥50 in W24 window	3 (1%) ^a	4(1%) ^b

^a DTG/ABC/3TC VLS: 58, 64, 71 C/mL ^b CAR VLs: 55, 55, 61, 85 c/mL


- Subjects with HIV-1 RNA ≥50 c/mL at any visit (scheduled or unscheduled) will require further testing
- Subjects with HIV-1 RNA ≥400 c/mL on 2 consecutive assessments any time after randomization are withdrawn = meets "confirmed virological withdrawal criterion"

c/mL, *copies/mL*; *CAR*, *current antiretroviral therapy*; *PDVF*, *pre-defined virological failure*.

Trottier B, et al. Presented at ICAAC, 17-21 September 2015, San Diego.

STRIIVING: treatment satisfaction-total score

- At baseline, overall treatment satisfaction scores were similar between groups.
- HIV TSQ total scores increased in both groups, with a statistically significant difference favouring DTG/ABC/3TC.

CAR, current antiretroviral therapy; TSQ, treatment satisfaction questionnaire.

Trottier B, et al. Presented at ICAAC, 17-21 September 2015, San Diego.

STRIIVING: conclusions

- Switching to DTG/ABC/3TC from a variety of regimens was demonstrated to be safe and effective
- Switching to DTG/ABC/3TC met non-inferiority endpoints for all population analyses
- No subjects met the protocol-defined virological failure endpoint through 24 weeks
- Discontinuations due to AEs in the DTG/ABC/3TC arm were infrequent and mostly due to low grade adverse events
- Greater improvements in treatment satisfaction were demonstrated in subjects switching to DTG/ABC/3TC
- No worsening of markers associated with cardiovascular disease was observed following switch to DTG/ABC/3TC as compared with CAR
 - Cardiovascular biomarker data may suggest reduced microbial translocation and monocyte activation following switch to DTG/ABC/3TC

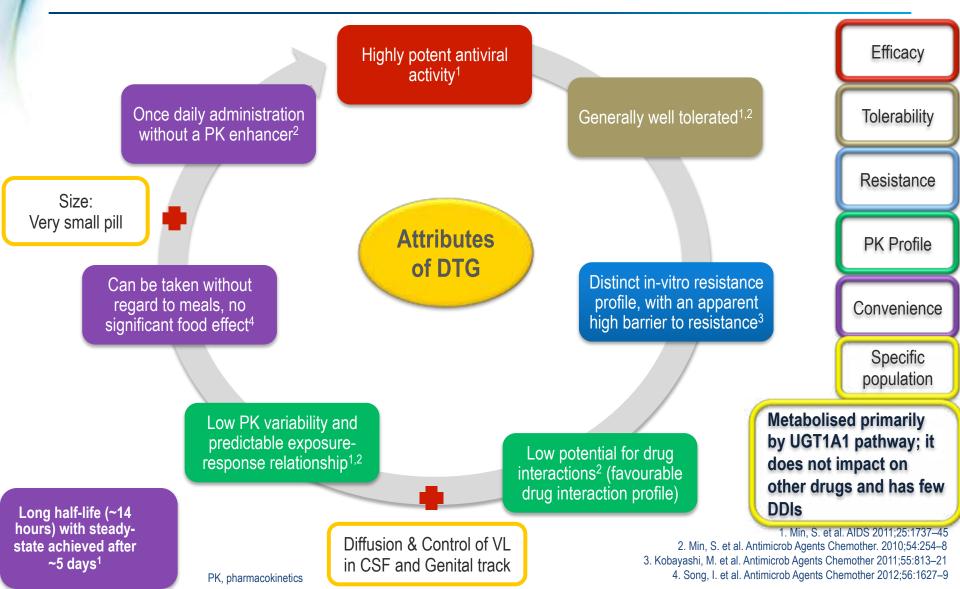
AEs, adverse events.

COMBINATION REGIMEN COMPARISON

Red, negative trait; green, positive trait; orange, may be positive or negative

	ATRIPLA ¹	EVIPLERA/ COMPLERA ²	STRIBILD ³	Tivicay+ABC/3TC ⁴	TAF-STRIBILD ⁵	TAF+FTC +DRV/ COBI ⁶	TAF+FTC+ RPV ⁷	Generic SPRs?
Broad indication	Yes	No	No	Yes	?	?	?	?
Boosting requirement	No	No	Yes	No	Yes	Yes	No	?
DDIs	Few	Few	Many	Few	Many	Many	Few	?
Food restrictions	Yes	Yes	Yes	No	Yes?	No?	Yes	?
Efficacy in high VL	Yes	No	Yes	Yes	Yes?	Yes?	?	?
Resistance profile – barrier to resistance	Low	Low	Moderate	Probable high?	Moderate*	Probable high?	Low	?
Class cross resistance	Yes	Yes	Yes	No	Yes?	No?	Yes	?
Percentage of Grade 2–4 ADRs reported at 96 wks	Moderate (0–9%)	Low (1–2%)	Moderate (1–16%)	Low (0–3%)	Moderate?	Moderate?	Low	
Effect on lipids	Negative	Positive	Negative	Neutral	Neutral?	Negative?	Negative?	?
Link to CV, bone, renal toxicity	Renal/bone	Renal/bone	Renal/bone	сv	No?	No?	No?	?
Requires additional renal monitoring	No	No	Yes	No	No?	No?	No?	?
Requires screening genetic test	No	No	No	Yes	No	No	No	?
Contains tenofovir	Yes	Yes	Yes	No	No	No	No	?

Table not meant to imply that head-to-head safety and efficacy studies have been conducted. Note: efficacy takes in to account reduction in VL, CD4+ count, duration of response and speed of action (updated on 28 Aug 2014)


Slide based on feedback from advisory boards and internal communications '?' after a characteristic denotes that it is currently unknown, but has been assumed based on available data ADR, adverse drug reaction; CV, cardiovascular; DDI, drug–drug interaction; VL, viral load; TAF, tenofovir alafenamide

1. ATRIPLA Prescribing Information, October 2013; 2. COMPLERA Prescribing Information, June 2014; 3. STRIBILD Prescribing Information, August 2012; 4. TRIUMEQ Prescribing Information, August 2014; 5. Sax PE, et al. ICAAC 2013. Abstract H-146d; 6.

communication. ViiV Healthcare

ATTRIBUTES OF DOLUTEGRAVIR

THANK YOU

EA/DLG/0004/14n

FDA Pregnancy categories for Antiretroviral Therapy (1)

FDA Pregnancy Categories

Category A: Adequate and well-controlled studies of pregnant women fail to demonstrate a risk to the fetus during the first trimester of pregnancy (and no evidence exists of risk during later trimesters)

Category B: Animal reproduction studies fail to demonstrate a risk to the fetus, and adequate, but wellcontrolled, studies of pregnant women have not been conducted

Category C: Safety in human pregnancy has not been determined; animal studies either are positive for fetal risk or have not been conducted, and the drug should not be used unless the potential benefit outweighs the potential risk to the fetus

Category D: There is positive evidence of human fetal risk that is based on adverse-reaction data from investigational or marketing experiences, but the potential benefits from the use of the drug in pregnant women might be acceptable despite its potential risks

Category X: Studies in animals or reports of adverse reactions have indicated that the risk associated with the use of the drug for pregnant women clearly outweighs any possible benefit