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An evaluation of a computer-based consultation system called MYCIN was made. Eight independent
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evaluators with special expertise in the management of meningitis compared MYCIN's choice of
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Abstract

Mycin, a computer-based consultation system which provides to physicians antimicrobial therapy
recommendations for patients with bacterial infections, is described. The consultation program arrives
at therapeutic decisions using a built-in knowledge base as well as patient data entered by the
physician. The system is capable of explaining its recommendations and answering questions about
its reasoning process. The system's knowledge can be updated and corrected easily by infectious
disease experts. At present the system Is operational within a research setting; its routine use in a
clinical setting will require further evaluation of its reliability and effectiveness.
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Artificial intelligence in sepsis early prediction and .
diagnosis using unstructured data in healthcare

Kim Huat Goh M'E, Le Wang M'E, Adrian Yong Kwang Yeow 2, Hermione Pr.::nh3, Ke Li3,

Joannas Jie Lin Yeow® 3 & Gamaliel Yu Heng Tan3

Sepsis is a leading cause of death in hospitals. Early prediction and diagnosis of sepsis, which
is critical in reducing mortality, is challenging as many of its signs and symptoms are similar
to other less critical conditions. We develop an artificial intelligence algorithm, SERA algo-
rithm, which uses both structured data and unstructured clinical notes to predict and diag-
nose sepsis. We test this algorithm with independent, clinical notes and achieve high
predictive accuracy 12 hours before the onset of sepsis (AUC 0.94, sensitivity 0.87 and
specificity 0.87). We compare the SERA algorithm against physician predictions and show
the algorithm’s potential to increase the early detection of sepsis by up to 32% and reduce
false positives by up to 17%. Mining unstructured clinical notes is shown to improve the
algorithm’s accuracy compared to using only clinical measures for early warning 12 to
48 hours before the onset of sepsis.
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/541467-021-20910-4

Table 5 Topic categories.

Category Count Definition

Clinical status Routine updates of clinical conditions as well as diagnosis (e.g., vitals) excluding lab and radio-diagnostic tesfs
| Communication 3 communicagon petween siar

lab test 24 Orders and reports of lab or radio-diagnostic test results

Non-clinical status 2 Routine updates of non-clinical conditions

Social relationship 2 Information about family and social aspects of patient

Symptom 10 Clinical symptoms

Treatment 31 Treatment procedure or medication prescribed as well as the status of the treatment/ medication

The 100 topics are classified into seven different categories. The distribution of topics among categories is similar if 25, 50, 75, or 150 topics are extracted instead. Detailed results are available upon
request from the corresponding authors.
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Fig. 1 Setup of SERA algorithm. The flow diagram shows the steps used to develop the SERA Algorithm. Both structured data (vitals, investigations, and
treatment) and unstructured data (clinical notes) are used in the process of diagnosing and predicting sepsis.



Machine learning algorithm. Ensemble methods are machine-learning algorithms
that utilize multiple classifiers to determine the predicted outcome by taking a
(weighted) vote of their predictions. These methods often perform better than any
single classifier”®>”. There are several different ensemble methods, such as voting,
bagging, stacking, and boosting.

In our main estimation, we use a voting ensemble. Voting is an ensemble
machine learning model that combines the predictions from multiple other models
(base classifiers). Here, we use two base classifiers: a stochastic gradient descent
(SGD) based logistics regression and a random forest algorithm. Our combination
rule is an average of probabilities, i.e., we calculate the average probability of the
two base models as our voted probability.

The first base classifier, SGD, is an optimizing algorithm that seeks to minimize
the error in prediction by learning iteratively from prior fitted estimates. The
method iteratively draws random samples from the training sample to estimate the
parameters of the model that is used to classify a patient as having sepsis or not
having sepsis. It learns from each sampling iteration to determine the accuracy of
the classification and adjust the parameter estimation until further improvements
in prediction results are minimal.

For each iteration, the predicted parameter f§ is calculated, and the model is
updated using the following logistic equation:

B = B +Ir(y — )y(1 — j)x (1)

where f is the optimized parameter, Ir is a learning rate, y — y is the prediction
error for the model in a particular iteration in the training data, y is the prediction
made by the coefficients, and x is the input value. In our case, the input variables
were a combination of the structured variables (as indicated in Table 1) and the
topic loadings of each clinical note on the 100 topics we extracted in the text
mining procedure.

The second classifier used here for voting is a random forest classifier, with the
case of sepsis being the target variable. The probabilities of both classifiers are
averaged out to arrive at the final probability used in our voting ensemble model.
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Table 3 Statistics of diagnosis and early prediction algorithm (in low prevalence condition without SMOTE).

Diagnosis algorithm

Outcome predict if the patient Voting Dagging GBT

has sepsis Prevalence ALIC Sensitivity Specificity PPV MNP AUC AUC

At the present time 077 0.94 0.8% 0.87 0.5% 0.97 0.92 0.94

Early prediction algorithm

Outcome predict if patient will Voting Dagging GBT
. ' Prevalence Sensitivity Specificity PPV MNP AUC AUC

0.012 0.76 0.76 0.04 0.99 0.82 0.85

24 h later 0.010 0.81 0.79 0.04 0.99 0.88 0.8%9

12 h later 0.008 0.88 0.82 0.04 0.99 0.92 0.93

6 h later 0.002 0.88 0.83 0.01 0.99 0.90 0.93

4 h later 0.001 0.87 0.01 0.99 0.92 0.94

Mo oversampled applied. Prevalence is computed Gt the Ll MOLE BEvel ro B SalTie NUmioer o
uses the voting algorithen; dagging, and GBT algorithms are presented for comparative purposes.

e prourrences are different for a different time window. SERA algorithm

Table 2 Statistics of diagnosis and early prediction algorithm (SMOTE).

Diagnosis algorithm

Outcome predict if the patient has Voting Dagging
sepsis AUC Sensitivity Specificity PPV MNPY AUC
At the present time 094 0.89 0.87 0.85 0.590 0.92

Early prediction algorithm
Outcome predict if patient will have

Sensitivity Specificity

0.78 Q.77
0.81 0.80

48 h later
24 h later
12 h later 0.87 0.87
0.88 0.81

0.86 0.80

& h later

GBT
AULC
0.94

GBT
AULC
0.83
0.86
0.92
0.93
0.9

pUFpOSEs.

ited for comparative
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Fig. 2 ROC curves for 48, 24, 12, 6, and 4-h early prediction. a, b The ROCs represent the performance of early prediction algorithm at 4, 6, 12, 24, and
y | 48 h prior to the onset of sepsis using the independent, test sample. "gSOFA”, "MEWS", "SIRS", and “SOFA" represent the TPR and FPR from these

‘\. methods employed by physicians in prior studies at 0-4 h prior to the onset of sepsis. "Physicians” represent TPR and FPR of patients in the independent,

N test sample set that were suspected by hospital's physicians to have sepsis at 4 h prior to the onset of sepsis. b "4 h", "6 h", "12h", “24 h", and "48 h"
represent TPR and FPR of patients in the independent, test sample set that were suspected by hospital’'s physicians to have sepsis at the respective time

prior to the onset of sepsis.
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SEPS

Veri Yonetimi

o Uygulamalarda en dnemli bilesen
1+ Yapay zeka algoritmalarinda kullanilacak verilere ulasabiliyorsa agik kaynak kodlu kaynaklari tercih edilebilir.
B *Veri satan sirketler mevcut.

\eHasta tanimlayicilari (dosya numarasi-hasta adi) kullanmadan dogrudan etik kurul basvurusu yaparak ve anonim hale
getirerek calisir.

*Ayrica hibrit yontemlerin kullanildigi projeler var.

BUtun veriler ISO-27001 standartlarinda korunmalidir.
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SEPSISI TANIYAN BIR YAPAY ZEKA YAPALIM?

Veri kalitesi:

Algoritma secimi:

Egitim verileri:

Sepsis tanisi:

Etkinlik:

Yapay zeka modelinin dogrulugu:

hidden layer

Oé)xozrx\\{}O/ f/output layer

input layer
hidden layer 1 hidden layer 2



Dataset: (x, y) fori=1tom

{x, vy} {X,y-hy} X, y-hy-h,}
1

$
th,} th}

Final Prediction = h,+ h,+ h,

Sekil 9: Gradyen Artirma modeli. X bagimsiz degiskenlerine karsilik gelen Y bagimli degiskenlerinden olusan bir veri setinde
karar destek agaci sonucu “h” tahminleri elde edilir ve bu tahminler her asamada bir 6nceki tahmin strecinden cikarilarak hata
“error” sonuclari ile tekrar besleme yapilir. Sonucta ortaya cikan tahmin her bir karar destek agacindan elde edilen tahminlerin
toplamidir.
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[I.PROPOSED SYSTEM

ree The sepsis dataset 15 collected from ICU patients
'] m three different hospial systems. The trammng dataset
consists of 20,336 subjects and 20,000 subjects. A table of
measurements over tume 15 included m each trammng data

file. The features are descrnibed in table 1.

‘- Heart rate (beats per minute)
Pulse oximetry (%)
Temperature (Deg C)
Systolic BP (mm Hg)
Mean artenal pressure (mm Hg)
Diastohc BP (mm Hg)
Bicarbonate (mmol/L)

Fraction of mspired oxy
Aspartate transammase (IU/L)

A
Alkalinephos Alkalme phosphatase (IL/L)

Bilmubin direct | Bilmubm direct (me/dL)

~
Lactate
Magnes ium
Phosphate
Potass ium

Bilimubin total
Troponml
Hct

Heh
Fibrmogen
Platelets

o
=

Table 1: Sepsis Trammng Dataset features and its
description.

_

Bm drive
B sample_data

Bl traming
Bl traming_selA

pOOO0001T . psy
pOO0O002Z2. psy
POO00003. psy
pOO0O0004.psv
pO0O000S.psv
PO0O0006. psv
pOO0O000 7. psy
pOO0O0DOB.psy
pO0O0009 psv
PpOO001T0.psy
pLOOOOT 1. psv
pOO00O1 2. psv
POO0013.psy
pO0O001T4. psyv
pOOOOT S.psy
POO00016. psy
pOO0001T 7.psy
pLOOOO 1 8. psy
PpOO001T9 psv
pO00020.

neermg

Figure 2: Data set: this 1s the list of training data set
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[ XGBoost

B Decision tree

[0 Random Forest

O Gradient
Boosting

Accuracy

Figure 6: Comparison of accuracy of XGBoost vs other
machme leaming algornthms.

V. CONCLUSION

Machme Leaming model XGBoost i1s employed to
predict sepsis and the model 1s validated agamst the
testing dataset which produces the accuracy of 95.01%.
Decision tree, Random Forest, Gradient Boosting Tree
(GBT) models are valdated with accuracy of 91.65%,
90.17%, 93.25% respectively. XGBoost outperforms
Decision tree, Random Forest, Gradient Boosting Tree
(GBT) models. Further feature selection can be employed
for better results and better model building with the under
the guidance of a good health science domam expert.
Using deep learning algonthms, the accuracy of sepsis
prediction can be increased even more.
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Table 1. Study characteristics

Srudy {year)

Clinical serting and dara
SOUFCE

Sample size®

Cohaort criteria infecrion
definirion

Task and objective

Harng et al " [2017)

Apostolova and Velez™®
(2017)

Cullivon et al.** (2017)

Delahanty et al.™ (2019)

Liu et al.™ (2019)

Amrollahi e al.** {2020)

=  EId
*  Berh Israel Deaconess

{Boston, MA, United
Srares)

* Dec 17, 2008—Feb 17,
2013

« ICU
*  MIMIC-II
= 1001-2012

* Inpatient care

*  Baystate hospitals
{Springheld, MA,
Unired Stares)

= 2012-2016

= ED

*  Temer Healthcare Hos-
pitals {MNashville, TN,

Unired Stares)
*  January 1, 2006—0cno-
ber 31, 2017

« ICU
MIMIC-III

* 2001-2012

* ICU

*  MIMIC-IN

« 21001-2012

230936 parient visits
* [Infecrion: 32 103 P;
4%
*  Noinfection: 198 833
P 96%
Train: 147 799 F; 64%%
Validarion: 46 187 P; 20%
Tesr: 36950 P; 16%
634 369 nursing notes
*  [Infecrion presence:
186158 N; 297%
* Possible infection: 3262
N; 1%
* Mo infecrion: 448 211
N; 70%
Train: 70%
Tesr: 30%
203 000 adulr inpatient ad-
MISSIon encounters
* Used 68482 E
#  Severe sepsis: 1427 E;
2.1%
3-fold cross validation:
only rext dara
Model construction:
2012-2015 dara
Tesr ser: 2016 dara:
* lsed 13603 E
*  Severe sepsisz 425 P
3.1%
2T7F9 529 parient encoun-
ters
#  Sepsis: 54661 E; 2%
*  No Sepsis: 2 704 368 E;
8%
Tram: 1839 503 E;
66.7%
*  Sepsis: 36458 E; 2%,
*  Nosepsis: 1 803 045 E;
98 %
Tesr: 920026 E; 33.3%
o Sepsis: 1B203 E; 2%
*  MNosepsis: 201 23 E;
b
38 6435 adult patients
Train: 70% P
Tese- 30%: P
Applied model roc
15930 P wirth suspected in-
fecrion and at least 1
physiological EHR data
40175 adult patients
® Sepsis: 2E05 P; ~TT
Train §0% P
Test 20%: P

Angus Sepsis ICD-2-CM
abseraction criteria”™

Notes describing patient
taking or being pre-
scribed antibiotics for
trearing infection

Modifed Baystare clinical
definition of severe sepsis
(8 srructured variables)
and severe sepsis ICD
codes

Rhee's modified Sepsis-3
definition™

Sepsis-3 definition’

Sepsis-3 definition’

Identify patients with sus-
pected infection to dem-
onstrate benefirs of using
clinical text with steuc-
rured dara for derecting
ED parients with sus-
pected infection.

Identity notes with sus-
pected or presence of in-
fection to develop a
svarem for detecring in-
fection signs and symp-
toms in free-text nursing
moles.

Predict severe sepsis 4, B,
and 24 h betore the earli-
el time srruciured varia-
bles meet the severe
sepsis definition to com-
pare accuracy of predict-

ing patients thar will
meet the clinical defini-
rion of sepsis when using
unstructured dara only,
srructured dara only, or
both tvpes.

Predict sepsis risk in
patients 1, 3, 6, 12, and
24 h afver the fiest viral
sign or laboratory result
is recorded in the EHR 1o

develop a new sepsis
screening pood comprara-
ble to benchmark screen-
ing tools.

Predict sepric shock in sep-
sis patients before the
earliest time sepric shock
Criteria are mer ro dem-
onstrate an approach us-
ing NLP features for
sepric shock predicrion.

Predict sepsis onset hours in
advance using a deep
learning approach o
show a pre-trained neu-
ral language representa-
rion model can improve
early sepsis detecrion.

IemrFim gl
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Table 1. continued

Srudy {vear)

Clinical serring and dara

Sample size™

Cohart criteria infecrion

Task and objective

SOUrCE definirion
Hammaoud et al.* (2020 « [CU 17763 patients Sepsis definition based on Predict early septic shock in
= MIMIC-II *  Sepsis: 6097 P what Henry er al ™ used ICL panents using a
* 20012007 *  Severe sepsis: 3962 P maodel thar can be opri-
*  Sepric shock - 1469 P mized based on user pref-
5-fold cross vahidation erence or performance
Goh er al.** (2021) « ICU 5317 parients (114 602 ICU admission with an dentity if a parient has sep-
-

Qin eral.™ (2021)

Singapare government-
based hospiral (Singa-
pore, Singapore)

Apr 2, 2015—Dec 31,
207

IcCu
MIMIC-III
2001-2012

noles)
Train and validation: 3722
P {30162 N)
* Sepsis: 6.45%
*  MNosepsis: 23.55%
Test: 1595 P (34 440 N)
* Sepsis: 5.45%
Mo sepsis: 94.55%
492 168 parients
Train: 33434 P
*  Sepsis: 1353 P
*  MNo Sepsis: 32081 P
Vahdatoon: 8358 P
*  Sepsis: 338 P
* Mo Sepsis: 8020 P
Test: 7376 P
*  Sepsis: 229P
& Mo Sepsis: 7077 P

ICD-10 code for sepsis,
SEVETE SEPSIS, OF SEpPsis
shock

PhysioMer Challenge re-
strictive Sepsis-3 defini-

tion® !

515 ar consultarion me
ar predict sepsis 4, 6, 12,
24, and 48 h after con-

sultation to develop an
algorithm rhar uses soruc-
rured and unsorucrured

data o diagnose and pre-
diCt sepsi

Predict if a patent will de-

velop sepsis o explore
how numerical and rex-
rual fearures can be used
to build a predictive
model for early sepsis
prediciion.

ED: emergency department; [CL: mtensive care unat; [CD: International Classificanon of Diseases; [CD-2 CM: ICD Chascal Modibeation, 9th revision; [CD-
10: ICT 10th revisiong MIMIC-11: Mulnparameter Intelligent Monstonng in Intensive Care [ database; MIMIC-ITI: Medical Informatson Mare for Intensive Care

clataset.

ises were searched. Articles
recognize, diagnose, or pre-
yonse syndrome, sepsis, se-
ta, ML models, NLP techni-

shysicians, and specialists in
mographics, vital signs, lab-
ve (AUC) comparison of ML
'r and more accurately than
measurements among the 9

'no studies used patient his-
cts reporting methods, out-

intensive care, making them

both unstructured text and
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Table 4. Study outcome overview of best and worst area under the curve values

Study (year) Hours® Data types” Models? (NLP)® AUCS
DVLMC T
Horng et al.* (2017) [dentify DV CC + NN RF (BoW) 0.87
DV- - NB 0.65
Apostolova and Velez™™ (2017) [dentify — ----- NN SVM (BoW + tf-idf) -
----- NN Logstic regression + KNN + SVM (PV) -
Culliton et al.* (2017) -4 e CN Ridge regression (GloVe) 0.64
-8 - CN Fadge regression (GloVe) .66
-4 - CN Ridge regression (GloVe) 0.73
— 245 -V- -C CN Ridge regression (GloVe) (.85
-V- -C - Ridge regression (GloVe) 0.80
Delahanty et al.”” (2019) +1 -VL- - GBT 0.93
+3 -VL- - GBT 0.95
+6 -VL- - GBT .96
+12 -VL- - GBT 0.97
+24 -VL- - - GBT 0.97
Liu et al.”™ (2019) -7 -VLM CN GRU (GloVe) 0.92
—7.3 -VLM CN GBT (BoW) 0.91
—6 -VLM - GBT 0.85
Amrollahi et al.”™ (2020) —4h -VL- PN + NN LSTM (Chmcal BERT) 0.54
_____ PN+ NN ] B EE
Hammoud et al.”* (2020) —30.6 DVL- - CN Lasso regression (BoW + tf-idf)
Goh et al.*™* (2021) [dentify DVLM P Logstic regression + RF (LDA)
DVLM PN dag + Logmstic regression (LDA)
—4 DVLM - Logstic regression + RF
DVLM PN dag + Logmstic regression (LDA)
—6 DVLM PN Logstic regression + RF (LDA)
DVLM PN dag + Logmstic regression (LDA)
—12 DVLM PN Logstic regression + RF (LDA)
DVLM - Logstic regression + RF
—24 DVLM PN Logstic regression + RF (LDA)
DVLM - Logstic regression + RF
—44 DVLM PN Logstic regression + RF (LDA)
DVLM - Logmstic regression :
Qin et al.”™ (2021) —6to () -VL- CN GBT (Clinical BER T-sf] 0.89
-VL- - GBT (Climical BERT-m) 0.86'
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APAY ZEKANI

~* Cok sayida alt Unitenin bir ic dolasim ve dis dolasim baglantisi ile kusursuz olarak calismasi gerekir.
v’ Elektronik saglik kayitlari
- v" Saglik bilgi degisimi (SBD) aglaridir.

 Tip terminolojileri, kapsamlari ve dlcim yontemleri farklilik gosterebilir.
* Tip terminolojileri en o6nemli gereksinim olcutlerin, analizlerin, numunelerin ideal olarak ortak bir kodu
paylasmasidir.

NPU:

LOINC:
SNOMED CT:
UCUM:

e Ornek vermek gerekirse Escherichia coli’i temsil eden 112283007, genisletilmis spektrumlu beta laktamaz enzimi:
uretiyor ise 40980000, Kapbapenemaz enzim geni tasiyorsa 737528008 direnc ozellikleri icin SNOMED CT kodu ile
tanimlanir.

* Saglikta, UCUM kodlari elektronik iletisimde (Dijital hastane 7. Seviye normlari tarafindan tanimlanan formatlardaki
mesajlar veya belgeler gibi) kullanilmak tzere tasarlanmistir ve genellikle insan yorumuna asina olan diger birim
dizeleri de bulunur.




YAPAY ZEKANIN BILESENLERI

VERSION 2.66

Code System Concept

Code System Concept Name

Code System Concept Code 86404008

Human immunodeficiency virus infection (disorder)
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ARTICLE INFO ABSTRACT

Keywords:
Artificial intelligence

Many studies have been published on a variety of clinical applications of artificial intelligence (AI) for sepsis,

while there is no overview of the literature. The aim of this review is to give an overview of the literature and

SEP“E_ ) thereby identify knowledge gaps and prioritize areas with high priority for further research.

Eﬁ:ﬁ;mng A literature search was conducted in PubMed from inception to February 2019. Search terms related to Al

Mortality were combined with tenns_ rf_-garding sepsis. Articles were included when they reported an area under the
receiver operator characteristics curve (AUROC) as outcome measure.

Fifteen articles on diagnosis of sepsis with Al models were included. The best performing model reached an
AUROC of 0.97. There were also seven articles on prognosis, predicting mortality over time with an AUROC of up
to 0.895. Finally, there were three articles on assistance of treatment of sepsis, where the use of Al was associated
with the lowest mortality rates. Of the articles, twenty-two were judged to be at high risk of bias or had major
concerns regarding applicability. This was mostly because predictor variables in these models, such as blood
pressure, were also part of the definition of sepsis, which led to overestimation of the performance.

We conclude that Al models have great potential for improving early identification of patients who may
benefit from administration of antibiotics. Current Al prediction models to diagnose sepsis are at major risks of
bias when the diagnosis criteria are part of the predictor variables in the model. Furthermore, generalizability of
these models is poor due to overfitting and a lack of standardized protocols for the construction and validation of
the models. Until these problems have been resolved, a large gap remains between the creation of an Al algo-
rithm and its implementation in clinical practice.
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Table 1

Characteristics of the included studies.
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Table 3

Specific types of artificial intelligence models.

Author Year Type of Type of model
Learning
Delahanty 2019  Supervised Gradient-boosted tree model
Desautels 2016  Supervised Gradient-boosted tree model
Mao 2018  Supervised Gradient-boosted tree model
Kam 2017  Reinforced Long short-term memory
Kaji 2019  Reinforced Neural Network
Nemati 2018  Supervised Modified Weilbull-Cox proportional
hazards model
Taneja 2017  Supervised Support Vector Machine
Van 2018  Reinforced Long short-term memory neural
Steenkiste network
Oonsivalai 2018  Supervised Random Forest Model
Dybowski 1996  Reinforced Artificial Neural Network
Taylor 2016  Supervised Random Forest model
Aushev 2018  Supervised Machine Learning
Meiring 2018  Reinforced Deep Learning Model
Jaimes 2005  Reinforced Artificial Neural Network
Garcia-Gallo 2018  Supervised Stochastic Gradient Boosting
Komorowski 2018  Reinforced Markov decision process
Merouani 2008  Reinforced Fuzzy Logic
Shimbukuro 2017  Supervised Machine learning
Henry 2015  Supervised Cox proportional hazards model
Ward 2017  Supervised Causal Probabilistic Network
Lamping 2018  Supervised Random Forest Model
Ratzinger 2018  Supervised Random Forest Model
Saqib 2018  Supervised Random Forest Model
Shashikumar 2017  Supervised Elastic Net logistic classifier
Barton 2019  Supervised Gradient-boosted tree model
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HEDEFLER:

> Hastanelerde triyajda ve yatan hasta hizmetlerinde planlama ve verimlilik
»Yogun bakim Unitelerinde dogru planlama, empirik antimikrobiyal tedavinin baslanmasi
» Mortalitenin disdirilmesi, yatis stresinin kisaltiilmasi, Uygun maliyetli tedavi yonetimi
»Hastanede direnc sorununa yonelik erken tedbir alinmasini saglayabilir.

» Personel arasinda zaman kaybinin 6nline gecebilir.

> Daha dogru ve hizli bir sekilde sepsis teshisi koyma kapasitelerinin artirilmasi

> Yapay zekalarin sepsis tanisina destek olma siirecinde doktorlarin karar verme siirecine
entegre edilmesi de 6nemlidir.

> Komorbiditeler, dnceki yatis , dnceki nosokomiyal enfeksiyon gibi olaylari dahil ederek
sepsis riskinin 48 saatten daha once tahmin edilebilmesi



KISITLILIKLAR

> Sepsis gibi acil durumlarda veri toplama siireci karmasik ve zaman alici olabilir. Bu nedenle,
vapay zeka algoritmalari icin yeterli yapilandirilmis veri bulunamayabilir veya verilerin kalitesi
veterli olmayabilir.

> Sepsis teshisi koymak icin kullanilan yapay zeka algoritmalari, egitim veri setindeki durumlara
benzer olmayan, farkl bir hasta grubu icin dogru sonuclar vermeyebilir.

> Yapay zeka algoritmalarinin kullanimi, hastalarin veri gizliligi ve giivenligi, hastalarin insan disi

bir teknoloji tarafindan teshis edilmesi ve tedavi edilmesi gibi etik konulari da beraberinde getirir.
Bu nedenle, yapay zeka algoritmalarinin kullanimiyla ilgili etik ve hukuki sorunlar dikkate
alinmalidir.



ANAHTAR NOKTALAR

> Yapay zeka tabanl sistemler tibbi kayitlardan elde edilen verileri kullanarak sepsis olasiligini
tahmin edebilir. Bu sistem, hastalara daha erken ve daha dogru bir teshis konulmasina yardimci
olabilir.

> Yapay zeka algoritmalari yiiksek duyarlilik ve 6zgiilliik oranlarina ulasabilse de doktorun klinik
calismasini ikame etmeyi degil, tamamlayi hedefler !

> Klinisyenlerin yapay zeka bilgilerini artirmak, blyiuk veri isleme ve  karar verme
mekanizmalarinin saglikl isleyisi icin benzersiz bir firsat sunar.






