

SEPSIS TANISINDA YAPAY ZEKA UYGULAMALARI

Dr. Ahmet Rıza Şahin Adana Şehir Eğitim ve Araştırma Hastanesi

asuaassimisa

SEPS

COMMENDIAN

LOUIS ARTING THE LEVEL

10000011000

Sittes 16 bits ON CONTRAINING OF THE **GINIL NAV**D

5

010

1.00

enanna

GUILIUM

SEPS

SEPSIS

COMMUNED C TEL SURA acas ta 3 -----Contraction of the Contraction o LAURE REPRESENTED

CIALUS KANA

Girgunnusses

Chasman Material Const

DIFFICIENT CONSTITUTION

ESTIMATION STATEMENT

COMMUNICATION STATE

Comment

CN (1) (1) (1)

anno

IBM Watson Health

ICCA

COLUMN 1

101

39990

1

- Children

TURKIYE CUMHURIYET MERKEZ BANKASI

 $Arf(q) = \sum_{i=1}^{n} q(a_i) q(b_i) \in \mathbb{Z}_q$

22 790752

0

A622 790752 10

aunaaamin

THROTHER

Associated data

× Searc	h KKKID	
User	r Guide	
Sorted by: Best match Display options	s 🌣	
\ll $<$ Page 1 of 1 $>$	>	
ultations in clinical therapeutics: explanation and rule of the MYCIN system.	*** ×	
SG, Buchanan BG, Green CC, Cohen SN. ug;8(4):303-20. doi: 10.1016/0010-4809(75)90009-9. act available.		
shed cell lines for MLR locus typing.	25	

Se	arch		
	User G	iuide	
isplay op	tions	¢	
of 1	>	\gg	
tious			
Cohen SN	١.		

Windows'u Etkinle

> Am J Hosp Pharm. 1976 Dec;33(12):1304-8.

Computerized consultation system for selection of antimicrobial therapy

S M Wraith, J S Aikins, B G Buchanan, W J Clancey, R Davis, L M Fagan, J F Hannigan, A C Scott, E H Shortliffe, W J van Melle, V L Yu, S G Axline, S N Cohen

PMID: 998649

Abstract

Mycin, a computer-based consultation system which provides to physicians antimicrobial therapy recommendations for patients with bacterial infections, is described. The consultation program arrives at therapeutic decisions using a built-in knowledge base as well as patient data entered by the physician. The system is capable of explaining its recommendations and answering questions about its reasoning process. The system's knowledge can be updated and corrected easily by infectious disease experts. At present the system is operational within a research setting; its routine use in a clinical setting will require further evaluation of its reliability and effectiveness.

Veri kalitesi:

Algoritma seçimi:

Eğitim verileri:

Sepsis tanısı:

Etkinlik:

Yapay zeka modelinin doğruluğu:

nature communications

ARTICLE

https://doi.org/10.1038/s41467-021-20910-4

OPEN

Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare

CEDC

Kim Huat Goh ^{1,4™}, Le Wang ^{1,4™}, Adrian Yong Kwang Yeow ², Hermione Poh³, Ke Li³, Joannas Jie Lin Yeow ³ & Gamaliel Yu Heng Tan³

Sepsis is a leading cause of death in hospitals. Early prediction and diagnosis of sepsis, which is critical in reducing mortality, is challenging as many of its signs and symptoms are similar to other less critical conditions. We develop an artificial intelligence algorithm, SERA algorithm, which uses both structured data and unstructured clinical notes to predict and diagnose sepsis. We test this algorithm with independent, clinical notes and achieve high predictive accuracy 12 hours before the onset of sepsis (AUC 0.94, sensitivity 0.87 and specificity 0.87). We compare the SERA algorithm against physician predictions and show the algorithm's potential to increase the early detection of sepsis by up to 32% and reduce false positives by up to 17%. Mining unstructured clinical notes is shown to improve the algorithm's accuracy compared to using only clinical measures for early warning 12 to 48 hours before the onset of sepsis.

CODATION

Check for updates

ARTICLE

Table 5 Topic categories.

Category	Count	Definition
Clinical status	28	Routine updates of clinical condition
Communication	3	Communication between staff
lab test	24	Orders and reports of lab or radio-d
Non-clinical status	2	Routine updates of non-clinical cond
Social relationship	2	Information about family and social
Symptom	10	Clinical symptoms
Treatment	31	Treatment procedure or medication

The 100 topics are classified into seven different categories. The distribution of topics among categories is similar if 25, 50, 75, or 150 topics are extracted instead. Detailed results are available upon request from the corresponding authors.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-20910-4

Fig. 1 Setup of SERA algorithm. The flow diagram shows the steps used to develop the SERA Algorithm. Both structured data (vitals, investigations, and treatment) and unstructured data (clinical notes) are used in the process of diagnosing and predicting sepsis.

ns as well as diagnosis (e.g., vitals) excluding lab and radio-diagnostic tests

diagnostic test results

nditions

aspects of patient

n prescribed as well as the status of the treatment/ medication

ARTICLE

Machine learning algorithm. Ensemble methods are machine-learning algorithms that utilize multiple classifiers to determine the predicted outcome by taking a (weighted) vote of their predictions. These methods often perform better than any single classifier^{38,39}. There are several different ensemble methods, such as voting, bagging, stacking, and boosting.

In our main estimation, we use a voting ensemble. Voting is an ensemble machine learning model that combines the predictions from multiple other models (base classifiers). Here, we use two base classifiers: a stochastic gradient descent (SGD) based logistics regression and a random forest algorithm. Our combination rule is an average of probabilities, i.e., we calculate the average probability of the two base models as our voted probability.

The first base classifier, SGD, is an optimizing algorithm that seeks to minimize the error in prediction by learning iteratively from prior fitted estimates. The method iteratively draws random samples from the training sample to estimate the parameters of the model that is used to classify a patient as having sepsis or not having sepsis. It learns from each sampling iteration to determine the accuracy of the classification and adjust the parameter estimation until further improvements in prediction results are minimal.

For each iteration, the predicted parameter β is calculated, and the model is updated using the following logistic equation:

$$\beta^{\text{new}} = \beta^{\text{old}} + \ln(y - \hat{y})\hat{y}(1 - \hat{y})x \tag{1}$$

where β is the optimized parameter, lr is a learning rate, $y - \hat{y}$ is the prediction error for the model in a particular iteration in the training data, \hat{y} is the prediction made by the coefficients, and x is the input value. In our case, the input variables were a combination of the structured variables (as indicated in Table 1) and the topic loadings of each clinical note on the 100 topics we extracted in the text mining procedure.

The second classifier used here for voting is a random forest classifier, with the case of sepsis being the target variable. The probabilities of both classifiers are averaged out to arrive at the final probability used in our voting ensemble model.

Table 3 Statistics of diagnosis and early prediction algorithm (in low prevalence condition without SMOTE).

ithm								
t if the patient	Voting						Dagging	(
	Prevalence	AUC	Sensitivity	Specificity	PPV	NPV	AUC	ŀ
ime	0.177	0.94	0.89	0.87	0.59	0.97	0.92	0
algorithm								
t if patient will	Voting						Dagging	0
_	Prevalence	AUC	Sensitivity	Specificity	PPV	NPV	AUC	ŀ
	0.012	0.87	0.76	0.76	0.04	0.99	0.82	0
	0.010	0.90	0.81	0.79	0.04	0.99	0.88	0
	0.008	0.94	0.88	0.82	0.04	0.99	0.92	0
	0.002	0.92	0.88	0.83	0.01	0.99	0.90	(
)	0.001	0.92	0.89	0.87	0.01	0.99	0.92	0
	<u> </u>				<u> </u>			

No oversampled applied. Prevalence is computed at the clinical note level. For the same number of sepsis cases, the clinical note occurrences are different for a different time window. SERA algorithm uses the voting algorithm; dagging, and GBT algorithms are presented for comparative purposes.

Table 2 Statistics of diagnosis and early prediction algorithm (SMOTE).

m							
the patient has	Voting					Dagging	G
	AUC	Sensitivity	Specificity	PPV	NPV	AUC	Α
e	0.94	0.89	0.87	0.85	0.90	0.92	0
orithm							
patient will have	Voting					Dagging	G
	AUC	Sensitivity	Specificity	PPV	NPV	AUC	A
	0.87	0.78	0.77	0.77	0.78	0.83	0
	0.90	0.81	0.80	0.80	0.80	0.86	0
	0.94	0.87	0.87	0.87	0.87	0.92	0
	0.92	0.88	0.81	0.82	0.87	0.90	0
	0.92	0.86	0.80	0.81	0.86	0.85	0
notes to achieve a balance	d sample of ser	sis and non-sensis case e	antries SERA algorithm use	is the voting algorith	hm: dagging and G	BT algorithms are pres	ted for a

S

011

Fig. 2 ROC curves for 48, 24, 12, 6, and 4-h early prediction. a, b The ROCs represent the performance of early prediction algorithm at 4, 6, 12, 24, and 48 h prior to the onset of sepsis using the independent, test sample. "qSOFA", "MEWS", "SIRS", and "SOFA" represent the TPR and FPR from these methods employed by physicians in prior studies at 0-4 h prior to the onset of sepsis. "Physicians" represent TPR and FPR of patients in the independent, test sample set that were suspected by hospital's physicians to have sepsis at 4 h prior to the onset of sepsis. b "4 h", "6 h", "12 h", "24 h", and "48 h" represent TPR and FPR of patients in the independent, test sample set that were suspected by hospital's physicians to have sepsis at the respective time prior to the onset of sepsis.

Algorithm: % of sepsis patient records predicted to be at high risk by algorithm Physician: % of sepsis patient records predicted to be at high risk by physician

Algorithm: % of non-sepsis patient records predicted to be at high risk of sepsis by algorithm Physician: % of non-sepsis patient records predicted to be at high risk of sepsis by physician

- Uygulamalarda en önemli bileşen
- •Veri satan şirketler mevcut.

S

- getirerek çalışır.
- •Ayrıca hibrit yöntemlerin kullanıldığı projeler var.
- •Bütün veriler ISO-27001 standartlarında korunmalıdır.

SEPS Veri Yönetimi

• Yapay zeka algoritmalarında kullanılacak verilere ulaşabiliyorsa açık kaynak kodlu kaynakları tercih edilebilir.

•Hasta tanımlayıcıları (dosya numarası-hasta adı) kullanmadan doğrudan etik kurul başvurusu yaparak ve anonim hale

SEPSISI TANIYAN BIR YAPAY ZEKA YAPALIM?

Veri kalitesi:

Algoritma seçimi:

Eğitim verileri:

Sepsis tanısı:

Etkinlik:

Yapay zeka modelinin doğruluğu:

Dataset: (x_i, y_i) for i=1 to m

Final Prediction = $h_1 + h_2 + h_3$

Şekil 9: Gradyen Artırma modeli. X bağımsız değişkenlerine karşılık gelen Y bağımlı değişkenlerinden oluşan bir veri setinde karar destek ağacı sonucu "h" tahminleri elde edilir ve bu tahminler her aşamada bir önceki tahmin sürecinden çıkarılarak hata "error" sonuçları ile tekrar besleme yapılır. Sonuçta ortaya çıkan tahmin her bir karar destek ağacından elde edilen tahminlerin toplamıdır.

watters extension for

\$#\$724\$**\$**\$434

III.PROPOSED SYSTEM

5

The sepsis dataset is collected from ICU patients in three different hospital systems. The training dataset consists of 20,336 subjects and 20,000 subjects. A table of measurements over time is included in each training data file. The features are described in table 1.

<>

Features	Description
HR	Heart rate (beats per minute)
O2Sat	Pulse oximetry (%)
Temp	Temperature (Deg C)
SBP	Systolic BP (mm Hg)
MAP	Mean arterial pressure (mm Hg)
DBP	Diastolic BP (mm Hg)
HCO3	Bicarbonate (mmol/L)

FiO2	Fraction of inspired oxygen (%)
pH	N/A
AST	Aspartate transaminase (IU/L)
Alkalinephos	Alkaline phosphatase (IU/L)
Calcium	(mg/dL)
Chloride	(mmol/L)
Creatinine	(mg/dL)
Bilirubin_direct	Bilirubin direct (mg/dL)
Glucose	Serum glucose (mg/dL)
Lactate	Lactic acid (mg/dL)
Magnesium	(mmol/dL)
Phosphate	(mg/dL)
Potassium	(mmol/L)
Bilirubin_total	Total bilirubin (mg/dL)
TroponinI	Troponin I (ng/mL)
Hct	Hematocrit (%)
Hgb	Hemoglobin (g/dL)
Fibrinogen	(mg/dL)
Platelets	(count*10^3/µL)

Table 1: Sepsis Training Dataset features and its description.

oun auminum

Figure 2: Data set: this is the list of training data set

DIA

Figure 6: Comparison of accuracy of XGBoost vs other machine learning algorithms.

Machine Learning model XGBoost is employed to predict sepsis and the model is validated against the testing dataset which produces the accuracy of 95.01%. Decision tree, Random Forest, Gradient Boosting Tree (GBT) models are validated with accuracy of 91.65%, 90.17%, 93.25% respectively. XGBoost outperforms Decision tree, Random Forest, Gradient Boosting Tree (GBT) models. Further feature selection can be employed for better results and better model building with the under the guidance of a good health science domain expert. Using deep learning algorithms, the accuracy of sepsis prediction can be increased even more.

V. CONCLUSION

Table 1. Study characteristics

Study (year)	Clinical setting and data source	Sample size ^a	Cohort criteria infection definition	Task and objective
Horng et al. ⁴⁷ (2017)	 ED Beth Israel Deaconess (Boston, MA, United States) Dec 17, 2008—Feb 17, 2013 	 230 936 patient visits Infection: 32 103 P; 14% No infection: 198 833 P; 86% Train : 147 799 P; 64% Validation: 46 187 P; 20% Test: 36 950 P; 16% 	Angus Sepsis ICD-9-CM abstraction criteria ⁷⁹	Identify patients with pected infection to onstrate benefits o clinical text with s tured data for dete ED patients with s pected infection.
Apostolova and Velez ⁴⁸ (2017)	 ICU MIMIC-III 2001–2012 	 634 369 nursing notes Infection presence: 186 158 N; 29% Possible infection: 3262 N; 1% No infection: 448 211 N; 70% Train: 70% 	Notes describing patient taking or being pre- scribed antibiotics for treating infection	Identify notes with su pected or presence fection to develop system for detection fection signs and su toms in free-text n notes.
Culliton et al. ⁴⁹ (2017)	 Inpatient care Baystate hospitals (Springfield, MA, United States) 2012–2016 	 Test: 30% 203 000 adult inpatient admission encounters Used 68 482 E Severe sepsis: 1427 E; 2.1% 3-fold cross validation: only text data Model construction: 2012–2015 data Test set: 2016 data: Used 13 603 E Severe sepsis: 425 P; 3.1% 	Modified Baystate clinical definition of severe sepsis (8 structured variables) and severe sepsis ICD codes	Predict severe sepsis 4 and 24 h before the est time structured bles meet the sever sepsis definition to pare accuracy of p ing patients that w meet the clinical de tion of sepsis when unstructured data of structured data of both types.
Delahanty et al. ⁵¹ (2019)	 ED Tenet Healthcare Hospitals (Nashville, TN, United States) January 1, 2016—October 31, 2017 	 2759 529 patient encounters Sepsis: 54 661 E; 2% No Sepsis: 2 704 868 E; 98% Train: 1 839 503 E; 66.7% Sepsis: 36 458 E; 2% No sepsis: 1 803 045 E; 98% Test: 920 026 E; 33.3% Sepsis: 18 203 E; 2% No sepsis: 901 823 E; 98% 	Rhee's modified Sepsis-3 definition ⁸⁰	Predict sepsis risk in patients 1, 3, 6, 12 24 h after the first sign or laboratory is recorded in the H develop a new seps screening tool com ble to benchmark s ing tools.
Liu et al. ⁵⁰ (2019)	 ICU MIMIC-III 2001–2012 	38 645 adult patients Train: 70% P Test: 30% P Applied model to: 15 930 P with suspected in- fection and at least 1 physiological EHR data	Sepsis-3 definition ¹	Predict septic shock i sis patients before earliest time septic criteria are met to onstrate an appro- ing NLP features f septic shock predic
Amrollahi et al. ⁵³ (2020)	 ICU MIMIC-III 2001–2012 	40 175 adult patients • Sepsis: 2805 P; ~7% Train 80% P Test 20% P	Sepsis-3 definition ¹	Predict sepsis onset h advance using a de learning approach show a pre-trained ral language repres

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 3

ith susto demof using structecting sus-

susce of inp a ting inl sympnursing

is 4, 8, the earlied variaere to comf predictwill definiien using ta only, only, or

11 12, and st vital ry result EHR to psis omparascreen-

in sepre the tic shock to demoach usfor liction. : hours in deep ch to ed neuresentation model can improve early sepsis detection.

(continu

Study (year)	Clinical setting and data source	Sample size ^a	Cohort criteria infection definition	Та
Hammoud et al. ⁵⁴ (2020)	 ICU MIMIC-II 2001–2007 	 17763 patients Sepsis: 6097 P Severe sepsis: 3962 P Septic shock : 1469 P 5-fold cross validation 	Sepsis definition based on what Henry et al ⁷⁸ used	Pro
Goh et al. ⁵² (2021)	 ICU Singapore government- based hospital (Singapore, Singapore) Apr 2, 2015—Dec 31, 2017 	 5317 patients (114 602 notes) Train and validation: 3722 P (80 162 N) Sepsis: 6.45% No sepsis: 93.55% Test: 1595 P (34 440 N) Sepsis: 5.45% No sepsis: 94.55% 	ICU admission with an ICD-10 code for sepsis, severe sepsis, or sepsis shock	Ide
Qin et al. ⁵⁵ (2021)	 ICU MIMIC-III 2001–2012 	49 168 patients Train: 33 434 P • Sepsis: 1353 P • No Sepsis: 32 081 P Validation: 8358 P • Sepsis: 338 P	PhysioNet Challenge re- strictive Sepsis-3 defini- tion ⁸¹	Pro

prediction. No Sepsis: 8020 P Test: 7376 P Sepsis: 229 P No Sepsis: 7077 P ED: emergency department; ICU: intensive care unit; ICD: International Classification of Diseases; ICD-9 CM: ICD Clinical Modification, 9th revision; ICD-

10: ICD 10th revision; MIMIC-II: Multiparameter Intelligent Monitoring in Intensive Care II database; MIMIC-III: Medical Information Mart for Intensive Care dataset.

ises were searched. Articles recognize, diagnose, or prebonse syndrome, sepsis, seta, ML models, NLP techni-

physicians, and specialists in mographics, vital signs, labve (AUC) comparison of ML er and more accurately than measurements among the 9

no studies used patient hiscts reporting methods, outintensive care, making them

both unstructured text and

Fask and objective

metrics.

Predict early septic shock in ICU patients using a model that can be optimized based on user preference or performance

563

dentify if a patient has sepsis at consultation time or predict sepsis 4, 6, 12, 24, and 48 h after consultation to develop an algorithm that uses structured and unstructured data to diagnose and predict sepsis.

Predict if a patient will develop sepsis to explore how numerical and textual features can be used to build a predictive model for early sepsis

570

Table 4. Study outcome overview of best and worst area under the curve values

Study (year)	Hours ^a	Data	types ^b	Models ^d (NLP) ^e	AUC ^f	127
ET ING		DVLMC	T ^c		CO10	
Horng et al.47 (2017)	Identify	DV DV	CC + NN	RF (BoW) NB	0.87 0.65	, 1
Apostolova and Velez ⁴⁸ (2017)	Identify		NN	SVM (BoW + tf-idf)	_	· /
			NN	Logistic regression + KNN + SVM (PV)	_	
Culliton et al. ⁴⁹ (2017)	-4		CN	Ridge regression (GloVe)	0.64	
	$^{-8}$		CN	Ridge regression (GloVe)	0.66	
	-24		CN	Ridge regression (GloVe)	0.73	
	-24 ^g	-VC	CN	Ridge regression (GloVe)	0.85	
		-VC	-	Ridge regression (GloVe)	0.80	0
Delahanty et al. ⁵¹ (2019)	+1	-VL	_	GBT	0.93	
	+3	-VL	_	GBT	0.95	
	+6	-VL	_	GBT	0.96	10 M
	+12	-VL	-	GBT	0.97	
	+24	-VL	_	GBT	0.97	
Liu et al. ⁵⁰ (2019)	-7	-VLM-	CN	GRU (GloVe)	0.92	1
	-7.3	-VLM-	CN	GBT (BoW)	0.91	00.
	-6	-VLM-	_	GBT	0.85	10.2
Amrollahi et al. ⁵³ (2020)	-4^{h}	-VL	PN + NN	LSTM (ClinicalBERT)	0.84	S.
			PN + NN	LSTM (ClinicalREPT)	0.74	
Hammoud et al. ⁵⁴ (2020)	-30.6	DVL	CN	Lasso regression (BoW + tf-idf)	0.89	
Goh et al. ⁵² (2021)	Identify	DVLM-	PN	Logistic regression + RF (LDA)	0.94	
		DVLM-	PN	dag + Logistic regression (LDA)	0.92	
	-4	DVLM-	_	Logistic regression + RF	0.93	
		DVLM-	PN	dag + Logistic regression (LDA)	0.85	
	-6	DVLM-	PN	Logistic regression + RF (LDA)	0.92	
		DVLM-	PN	dag + Logistic regression (LDA)	0.89	
	-12	DVLM-	PN	Logistic regression + RF (LDA)	0.94	
		DVLM-	_	Logistic regression + RF	0.79	
	-24	DVLM-	PN	Logistic regression + RF (LDA)	0.90	
		DVLM-	_	Logistic regression + RF	0.78	
	-48	DVLM-	PN	Logistic regression $+$ RF (LDA)	0.87	1.
		DVLM-	_	Logistic regression $+$ RF	0.77	ALC: NO.
		-VL	CN	GBT (ClinicalBERT-sf)	0.89 ⁱ	
Qin et al. ⁵⁵ (2021)	$-6 \text{ to } 0^{1}$	- V I	N		0.07	

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 3

YAPAY ZEKANIN BİLEŞENLERİ

- Çok sayıda alt ünitenin bir iç dolaşım ve dış dolaşım bağlantısı ile kusursuz olarak çalışması gerekir. Elektronik sağlık kayıtları
- Sağlık bilgi değişimi (SBD) ağlarıdır.
- Tıp terminolojileri, kapsamları ve ölçüm yöntemleri farklılık gösterebilir.
- paylaşmasıdır.

NPU: LOINC: **SNOMED CT:** UCUM:

- tanımlanır.
- dizeleri de bulunur.

Tıp terminolojileri en önemli gereksinim ölçütlerin, analizlerin, numunelerin ideal olarak ortak bir kodu

Örnek vermek gerekirse Escherichia coli'i temsil eden 112283007, genişletilmiş spektrumlu beta laktamaz enzimi üretiyor ise 40980000, Kapbapenemaz enzim geni taşıyorsa 737528008 direnç özellikleri için SNOMED CT kodu ile

Sağlıkta, UCUM kodları elektronik iletişimde (Dijital hastane 7. Seviye normları tarafından tanımlanan formatlardaki mesajlar veya belgeler gibi) kullanılmak üzere tasarlanmıştır ve genellikle insan yorumuna aşina olan diğer birim

YAPAY ZEKANIN BİLEŞENLERİ

Code System Concept	
Code System Concept Code	86406008
Code System Concept Name	Human immunodeficiency virus infection (disorder)
Code System Preferred Concept Name	e Human immunodeficiency virus infection (disorder)
Concept Status	Published
Concept Status Date	03/01/2019
Code System Name	<u>SNOMED-CT</u>
 SNOMED-CT Candidiasis of mou (disorder) {713497 Cognitive impairm infection (disorder) Congenital human CT Disorder of centra 	nan immunodeficiency virus infection (disorder) {91947003, uth co-occurrent with human immunodeficiency virus infection 7004, SNOMED-CT.} ent co-occurrent and due to human immunodeficiency virus) {15928141000119107, SNOMED-CT.} immunodeficiency virus infection (disorder) {52079000, SNOMED- linervous system co-occurrent with human immunodeficiency virus
infection (disorder) {713571008, SNOMED-CT } oper co-occurrent with human immunodeficiency virus infection
Disorder of gastro	<u>intestinal tract co-occurrent with human immunodeficiency virus</u>

LOINC 🕜	Q			VERSION 2.
	LOINC CODE 69668-2	LONG COMMON NAME HIV 1 and 2 Ab [Identifier] in Serum or Plasma by Rapid immunoassay	LOINC STATUS Active	
	FULLY-SPECIFIED NAME			
	Component	HIV 1 & 2 Ab		
	Property	Prid		
	Time	Pt		
	System	Ser/Plas		
	Scale	Nom		
	Method	IA.rapid		
	Additional Names			
	Short Name	HIV 1 & 2 Ab SerPI IA.rapid		
	Display Name BETA	HIV 1 and 2 Ab IA.rapid Nom		
	Consumer Name ALPHA	HIV 1 and 2 Antibody, Blood		

Most Common Healthcare Units

Valid UCUM Code	Descriptive Name	Common Synonym (non-UCUM)	Dime (IUP
%	Percent	%	1
/uL	PerMicroLiter	/uL	L-3
[iU]/L	InternationalUnitsPerLiter	IU/L	L-3[arb]
10*3/uL	ThousandsPerMicroLiter	K/uL, x10^3/mm^3	L-3
10*6/uL	MillionsPerMicroLiter	M/uL, x10^6/mm^3	L-3
fL	FemtoLiter	fL	L-3
g/dL	GramsPerDeciLiter	g/dL	L-3M
g/L	GramsPerLiter	g/L	L-3M
g/mL	GramsPerMilliLiter	g/mL	L-3M
kPa	KiloPascal	kPa	L-1MT-2
m[iU]/mL	MilliInternationalUnitsPerMilliLiter	mIU/mL	L-3[arb]
meq/L	MilliEquivalentsPerLiter	mEq/L	L-3N
mg/dL	MilliGramsPerDeciLiter	mg/dL	L-3M
mm[Hg]	MilliMetersOfMercury	mm Hg	L-1MT-2
mmol/kg	MilliMolesPerKiloGram	mmol/kg	M-1N
mmol/L	MilliMolesPerLiter	mmol/L	L-3N
mosm/kg	MilliOsmolesPerKiloGram	mOsm/kg	M-1N
ng/mL	NanoGramsPerMilliLiter	ng/mL	L-3M
nmol/L	NanoMolesPerLiter	nmol/L	L-3N
pg	PicoGrams	pg	M

Computers in Biology and Medicine 115 (2019) 103488

Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: http://www.elsevier.com/locate/compbiomed

Clinical applications of artificial intelligence in sepsis: A narrative review

Computers in Biology and Medicine

M. Schinkel^{a,1}, K. Paranjape^{a,1}, R.S. Nannan Panday^a, N. Skyttberg^b, P.W.B. Nanayakkara^{a,*}

^a Section Acute Medicine, Department of Internal Medicine, Amsterdam UMC, VU University Medical Center, De Boelelaan 1118, 1081HZ, Amsterdam, the Netherlands ^b Department of Learning, Informatics, Management and Ethics, Health Informatics Centre, Karolinska Institutet, 171 77, Stockholm, Sweden

ARTICLE INFO

Keywords: Artificial intelligence Sepsis Machine learning PROBAST Mortality

- CHARLE

ABSTRACT

Many studies have been published on a variety of clinical applications of artificial intelligence (AI) for sepsis, while there is no overview of the literature. The aim of this review is to give an overview of the literature and thereby identify knowledge gaps and prioritize areas with high priority for further research.

A literature search was conducted in PubMed from inception to February 2019. Search terms related to AI were combined with terms regarding sepsis. Articles were included when they reported an area under the receiver operator characteristics curve (AUROC) as outcome measure.

Fifteen articles on diagnosis of sepsis with AI models were included. The best performing model reached an AUROC of 0.97. There were also seven articles on prognosis, predicting mortality over time with an AUROC of up to 0.895. Finally, there were three articles on assistance of treatment of sepsis, where the use of AI was associated with the lowest mortality rates. Of the articles, twenty-two were judged to be at high risk of bias or had major concerns regarding applicability. This was mostly because predictor variables in these models, such as blood pressure, were also part of the definition of sepsis, which led to overestimation of the performance.

We conclude that AI models have great potential for improving early identification of patients who may benefit from administration of antibiotics. Current AI prediction models to diagnose sepsis are at major risks of bias when the diagnosis criteria are part of the predictor variables in the model. Furthermore, generalizability of these models is poor due to overfitting and a lack of standardized protocols for the construction and validation of the models. Until these problems have been resolved, a large gap remains between the creation of an AI algorithm and its implementation in clinical practice.

M. Schinkel et al.

Computers in Biology and Medicine 115 (2019) 103488

CONTINUES

Table 1

Characteristics of the included studies.

	Author, year	Study design	Setting	Database (MIMIC = Medical Information Mart for Intensive Care)	No. predictor variables in model	Outcome	PROBAST-assessment of bias; concern with applicability)
	Diagnosis						
	Delahanty,	Retrospective	Emergency	Hospital database (2.759.529	13	AUROC: 0.93 at 1-h, AUROC	ROB: high, applicabil
	2019		Department	patient encounters)	_	0.97 at 24-h	high
	Desautels, 2016	Retrospective	Intensive Care	MIMIC-III	8	AUROC: 0.880 at disease onset	ROB: high, applicabi low
Check for	Kaji, 2019	Retrospective	Intensive Care	MIMIC-III	119	AUROC: 0.952 at same-day, 0.876 at next-day	ROB: high, applicabil unclear
eview	Kam, 2017	Retrospective	Intensive Care	MIMIC-III	9	AUROC: 0.929	ROB: high, applicabil low
ara ^{a,*}	Mao, 2018	Retrospective	Hospital wide	Hospital database (17.467.987 patient encounters) MIMIC-III	6	AUROC: 0.92 4-h before sepsis onset.	ROB: high, applicabili low
etherlands	Nemati, 2017	Retrospective	Intensive Care	Hospital database (27.527 patient encounters) MIMIC-III	65	AUROC: 0.85 4-h before sepsis	ROB: high, applicabili high
	Taneja, 2017	Retrospective	Hospital wide	Hospital database (444 patient encounters)	21	AUROC: 0.81 at disease onset	ROB: high, applicabili high
	Henry, 2015	Retrospective	Intensive care	MIMIC-III	26	AUROC: 0.83 28.2-h before	ROB: high, applicabili high
al intelligence (AI) for sepsis, overview of the literature and	Saqib, 2018	Retrospective	Intensive care	MIMIC-III	12	sepsis onset. AUROC: 0.696	nıgn ROB: high, applicabili low
her research. 019. Search terms related to AI	Shashikumar,	Retrospective	Intensive Care	Hospital database (242 patient	Unclear	AUROC: 0.78 4-h before	ROB: high, applicabili
ey reported an area under the st performing model reached an	2017 Barton, 2019	Retrospective	Hospital Wide	encounters) Hospital database (91,445 patient encounters) MIMIC-III	6	sepsis onset. AUROC: 0.83 48-h before onset.	low ROB: high, applicabili low
y over time with an AUROC of up	Pathogen prediction	on		MIMIC-III			
ere the use of AI was associated	Van Steenkiste, 2018	Retrospective	Hospital wide	Hospital database (2177patient encounters)	9	AUROC: 0.99 with 72 h of data	ROB: low, applicabilit
t high risk of bias or had major in these models, such as blood	Oonsivalai, 2018	Retrospective	Hospital wide	Hospital database (243 patient encounters)	35	AUROC: 0.80 for ceftriaxone susceptibility	ROB: high, applicabil high
entification of patients who may	Lamping, 2018	Prospective, RCT	Pediatric ICU	Hospital based (230 patient encounters)	8	AUROC: 0.78 for infectious vs. non-infectious SIRS	ROB: high, applicabili high
nose sepsis are at major risks of Furthermore, generalizability of	Ratzinger, 2018	Prospective	Hospital wide	Hospital based (466 patient encounters)	21	AUROC: 0.73 for bacteraemia.	ROB: high, applicabili low
e construction and validation of	Prognosis						
veen the creation of an AI algo-	Aushev, 2018	Retrospective	Intensive care	ShockOmics	80	AUROC: 0.845 for ICU mortality	ROB: high, applicabili high
CEARLING OF THE DAY	Dybowski, 1996	Retrospective	Intensive care	Hospital database (4484 patient encounters)	11	AUROC: 0.863 for in-hospital mortality	ROB: high, applicabili high
In the second second	Garcia-Gallo, 2018	Retrospective	Intensive care	MIMIC-III	18	AUROC: 0.8083 for 1 year mortality	ROB: high, applicabili low
International Contractor	Jaimes, 2005	Retrospective	Emergency department	Hospital database (542 patient encounters)	10	AUROC: 0.8782 for 28-day mortality	ROB: low, applicabilit
E THE REAL PROPERTY OF	Meiring, 2018	Retrospective	Intensive care	MIMIC-II	25	AUROC: 0.895 for mortality	ROB: low, applicabilit
	Taylor, 2016	Retrospective	Emergency	MIMIC-III Hospital database (4676 patient	25	at ICU discharge AUROC: 0.86 for in-hospital	ROB: high, applicabili
	Ward, 2017	Retrospective	department Trials/Studies	encounters) Hospital database (2514 patient	18	mortality AUROC: 0.79 for 30-day	high ROB: high, applicabili
	Treatment assistar	-		encounters)		mortality	high
	Komorowski, 2018	off-policy evaluation	Intensive care	MIMIC-III eICU	48	AI policy associated with lowest mortality	ROB: high, applicabili high
	Merouani, 2008	Prospective, randomized	Intensive care	Hospital database (42 patient encounters)	2	Median duration of shock significantly shorter (28.5 h versus 57.5 h).	ROB: -, applicability:
	Shimbukuro,	Randomized controlled trial	Intensive care	Hospital database (142 patient encounters)	8	In-hospital mortality decreased by 12.4% points	ROB: high, applicabili low

ent (Risk

- bility:
- bility:
- bility:
- bility:
- bility:
- bility:
- bility:
- bility:
- bility:
- bility:
- bility:
- oility: low
- bility:
- bility:
- bility:
- bility:
- bility:
- bility:
- oility: low
- oility: low
- bility:
- bility:

Delahanty2019SupervisedGradient-bDesautels2016SupervisedGradient-bMao2018SupervisedGradient-bKam2017ReinforcedLong shortKaji2019ReinforcedNeural NetNemati2018SupervisedModified VNemati2017SupervisedSupport VVan2018ReinforcedLong shortSteenkistenetworknetworkOonsivalai2018SupervisedRandom FDybowski1996ReinforcedArtificial NTaylor2016SupervisedRandom FAushev2018SupervisedMachine LMeiring2018ReinforcedArtificial NJaimes2005ReinforcedArtificial NGarcia-Gallo2018SupervisedMachine LMeirouani2008ReinforcedFuzzy Logo	Author	Year	Type of	Type of m
Desautels2016SupervisedGradient-bMao2018SupervisedGradient-bKam2017ReinforcedLong shortKaji2019ReinforcedNeural NeNemati2018SupervisedModified VNanati2018SupervisedModified VNemati2018ReinforcedLong shortVan2018ReinforcedLong shortSteenkistenetworkNeural NeOonsivalai2018SupervisedPybowski1996ReinforcedArtificial NTaylor2016SupervisedRandom FAushev2018SupervisedMachine LMeiring2018ReinforcedDeep LearJaimes2005ReinforcedArtificial NGarcia-Gallo2018SupervisedMarkov deMerouani2008ReinforcedFuzzy LogiShimbukuro2017SupervisedCox propoWard2017SupervisedRandom FLamping2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedRandom FShashikumar2017SupervisedRandom F			Learning	
Mao2018SupervisedGradient-bKam2017ReinforcedLong shortKaji2019ReinforcedNeural NeNemati2018SupervisedModified VNemati2018SupervisedModified VNamati2017SupervisedSupport VVan2018ReinforcedLong shortSteenkistenetworkNeural NeOonsivalai2018SupervisedRandom FDybowski1996ReinforcedArtificial NTaylor2016SupervisedRandom FAushev2018SupervisedMachine LMeiring2018ReinforcedDeep LearJaimes2005ReinforcedArtificial NGarcia-Gallo2018SupervisedMachine LMerouani2008ReinforcedFuzzy LogShimbukuro2017SupervisedCox propoWard2017SupervisedCausal ProLamping2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedRandom F	Delahanty	2019	Supervised	Gradient-b
Kam2017ReinforcedLong shortKaji2019ReinforcedNeural NeiNemati2018SupervisedModified VNamati2018SupervisedModified VVan2018ReinforcedLong shortSteenkistenetworknetworkOonsivalai2018SupervisedRandom FDybowski1996ReinforcedArtificial NTaylor2016SupervisedRandom FAushev2018SupervisedMachine LMeiring2018ReinforcedDeep LeardJaimes2005ReinforcedArtificial NGarcia-Gallo2018SupervisedMarkov deMerouani2008ReinforcedFuzzy LogiShimbukuro2017SupervisedCox propoWard2017SupervisedRandom FLamping2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedRandom F	Desautels	2016	Supervised	Gradient-b
Kaji2019ReinforcedNeural NetNemati2018SupervisedModified V hazards mTaneja2017SupervisedSupport VV Long shortVan2018ReinforcedLong short networkOonsivalai2018SupervisedRandom FDybowski1996ReinforcedArtificial N Machine LTaylor2016SupervisedRandom FAushev2018SupervisedMachine L Deep LeardJaimes2005ReinforcedArtificial N StochasticGarcia-Gallo2018SupervisedMarkov de MerouaniQ008ReinforcedFuzzy Logi Shimbukuro2017SupervisedCox propo Vard2017SupervisedHenry2015SupervisedCox propo VardLamping2018SupervisedRandom F Saqib2018SupervisedRandom F SupervisedRandom F SupervisedShashikumar2017SupervisedRandom FShashikumar2017SupervisedRandom F	Mao	2018	Supervised	Gradient-b
Nemati2018SupervisedModified V hazards mTaneja2017SupervisedSupport V VanVan2018ReinforcedLong short networkOonsivalai2018SupervisedRandom FDybowski1996ReinforcedArtificial M Machine LTaylor2016SupervisedRandom FAushev2018SupervisedMachine LMeiring2018ReinforcedDeep Leard Machine LJaimes2005ReinforcedArtificial M StochasticGarcia-Gallo2018SupervisedMarkov de Markov de Merouani2008ReinforcedFuzzy Logi Shimbukuro2017SupervisedCox propo Causal Pro Mard2017SupervisedRandom F Ratzinger2018SupervisedRandom F RadingSupervisedShashikumar2017SupervisedShashikumar2017SupervisedSupervisedRandom FSupervisedRandom FSupervise	Kam	2017	Reinforced	Long short
Taneja2017SupervisedSupport VanVan2018ReinforcedLong shortSteenkistenetworknetworkOonsivalai2018SupervisedRandom FDybowski1996ReinforcedArtificial MTaylor2016SupervisedRandom FAushev2018SupervisedMachine LMeiring2018ReinforcedDeep LeardJaimes2005ReinforcedArtificial MGarcia-Gallo2018SupervisedStochasticKomorowski2018ReinforcedMarkov deMerouani2008ReinforcedFuzzy LogShimbukuro2017SupervisedCox propoWard2017SupervisedRandom FLamping2018SupervisedRandom FRatzinger2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedRandom F	Kaji	2019	Reinforced	Neural Ne
Taneja2017SupervisedSupport VerticeVan2018ReinforcedLong shortSteenkistenetworknetworkOonsivalai2018SupervisedRandom FDybowski1996ReinforcedArtificial NTaylor2016SupervisedRandom FAushev2018SupervisedMachine LMeiring2018ReinforcedDeep LeardJaimes2005ReinforcedArtificial NGarcia-Gallo2018SupervisedStochasticKomorowski2018ReinforcedMarkov deMerouani2008ReinforcedFuzzy LogShimbukuro2017SupervisedCox propoWard2017SupervisedRandom FLamping2018SupervisedRandom FRatzinger2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedRandom F	Nemati	2018	Supervised	Modified V
Van2018ReinforcedLong short networkSteenkiste2018SupervisedRandom FOonsivalai2018SupervisedRandom FDybowski1996ReinforcedArtificial NTaylor2016SupervisedRandom FAushev2018SupervisedMachine LMeiring2018ReinforcedDeep LeardJaimes2005ReinforcedArtificial NGarcia-Gallo2018SupervisedStochasticKomorowski2018ReinforcedMarkov deMerouani2008ReinforcedFuzzy LogShimbukuro2017SupervisedMachine leHenry2015SupervisedCox propoWard2017SupervisedRandom FLamping2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedRandom F				hazards m
SteenkistenetworkOonsivalai2018SupervisedRandom FDybowski1996ReinforcedArtificial MTaylor2016SupervisedRandom FAushev2018SupervisedMachine LMeiring2018ReinforcedDeep LeardJaimes2005ReinforcedArtificial MGarcia-Gallo2018SupervisedStochasticKomorowski2018ReinforcedMarkov deMerouani2008ReinforcedMachine LHenry2015SupervisedMachine leHenry2015SupervisedCox propoWard2017SupervisedRandom FLamping2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedRandom F	Taneja	2017	Supervised	Support V
Oonsivalai2018SupervisedRandom FDybowski1996ReinforcedArtificial MTaylor2016SupervisedRandom FAushev2018SupervisedMachine LMeiring2018ReinforcedDeep LearJaimes2005ReinforcedArtificial MGarcia-Gallo2018SupervisedStochasticKomorowski2018ReinforcedMarkov deMerouani2008ReinforcedFuzzy LogShimbukuro2017SupervisedMachine LHenry2015SupervisedCox propoWard2017SupervisedRandom FLamping2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedRandom F	Van	2018	Reinforced	Long short
Dybowski1996ReinforcedArtificial MTaylor2016SupervisedRandom FAushev2018SupervisedMachine LMeiring2018ReinforcedDeep LearJaimes2005ReinforcedArtificial MGarcia-Gallo2018SupervisedStochasticKomorowski2018ReinforcedMarkov deMerouani2008ReinforcedMarkov deHenry2015SupervisedGaverageVard2017SupervisedCox propoWard2018SupervisedRandom FLamping2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedRandom F	Steenkiste			network
Taylor2016SupervisedRandom FAushev2018SupervisedMachine LMeiring2018ReinforcedDeep LearJaimes2005ReinforcedArtificial MGarcia-Gallo2018SupervisedStochasticKomorowski2018ReinforcedMarkov deMerouani2008ReinforcedFuzzy LogShimbukuro2017SupervisedMachine leHenry2015SupervisedCox propoWard2017SupervisedRandom FLamping2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedRandom F	Oonsivalai	2018	Supervised	Random F
Aushev2018SupervisedMachine LMeiring2018ReinforcedDeep LearJaimes2005ReinforcedArtificial MGarcia-Gallo2018SupervisedStochasticKomorowski2018ReinforcedMarkov deMerouani2008ReinforcedFuzzy LogiShimbukuro2017SupervisedMachine leHenry2015SupervisedCox propoWard2017SupervisedCausal PropoLamping2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedElastic Net	Dybowski	1996	Reinforced	Artificial N
Meiring2018ReinforcedDeep LearJaimes2005ReinforcedArtificial MGarcia-Gallo2018SupervisedStochasticKomorowski2018ReinforcedMarkov deMerouani2008ReinforcedFuzzy LogiShimbukuro2017SupervisedMachine leHenry2015SupervisedCox propoWard2017SupervisedCausal PropoLamping2018SupervisedRandom FRatzinger2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedRandom F	Taylor	2016	Supervised	Random F
Jaimes2005ReinforcedArtificial MGarcia-Gallo2018SupervisedStochasticKomorowski2018ReinforcedMarkov deMerouani2008ReinforcedFuzzy LogiShimbukuro2017SupervisedMachine leHenry2015SupervisedCox propoWard2017SupervisedCausal ProLamping2018SupervisedRandom FRatzinger2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedRandom F	Aushev	2018	Supervised	Machine L
Garcia-Gallo2018SupervisedStochasticKomorowski2018ReinforcedMarkov deMerouani2008ReinforcedFuzzy LogShimbukuro2017SupervisedMachine leHenry2015SupervisedCox propoWard2017SupervisedCausal ProLamping2018SupervisedRandom FRatzinger2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedElastic Net	Meiring	2018	Reinforced	Deep Lear
Komorowski2018ReinforcedMarkov deMerouani2008ReinforcedFuzzy LogShimbukuro2017SupervisedMachine leHenry2015SupervisedCox propoWard2017SupervisedCausal ProLamping2018SupervisedRandom FRatzinger2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedElastic Net	Jaimes	2005	Reinforced	Artificial N
Merouani2008ReinforcedFuzzy LogShimbukuro2017SupervisedMachine leHenry2015SupervisedCox propoWard2017SupervisedCausal ProLamping2018SupervisedRandom FRatzinger2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedElastic Net	Garcia-Gallo	2018	Supervised	Stochastic
Shimbukuro2017SupervisedMachine leHenry2015SupervisedCox propoWard2017SupervisedCausal ProLamping2018SupervisedRandom FRatzinger2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedElastic Net	Komorowski	2018	Reinforced	Markov de
Henry2015SupervisedCox propoWard2017SupervisedCausal ProLamping2018SupervisedRandom FRatzinger2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedElastic Net	Merouani	2008	Reinforced	Fuzzy Log
Ward2017SupervisedCausal ProLamping2018SupervisedRandom FRatzinger2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedElastic Net	Shimbukuro	2017	Supervised	Machine le
Lamping2018SupervisedRandom FRatzinger2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedElastic Net	Henry	2015	Supervised	Cox propo
Ratzinger2018SupervisedRandom FSaqib2018SupervisedRandom FShashikumar2017SupervisedElastic Net	Ward	2017	Supervised	Causal Pro
Saqib 2018 Supervised Random F Shashikumar 2017 Supervised Elastic Net	Lamping	2018	Supervised	Random F
Shashikumar 2017 Supervised Elastic Net	Ratzinger	2018	Supervised	Random F
-	Saqib	2018	Supervised	Random F
Barton 2019 Supervised Gradient-b	Shashikumar	2017	Supervised	Elastic Net
	Barton	2019	Supervised	Gradient-b

nodel

-boosted tree model -boosted tree model -boosted tree model rt-term memory etwork Weilbull-Cox proportional nodel Vector Machine rt-term memory neural Forest Model Neural Network Forest model Learning rning Model Neural Network c Gradient Boosting lecision process gic learning

ortional hazards model

obabilistic Network

Forest Model

Forest Model

Forest Model

et logistic classifier

-boosted tree model

CONTRACTOR -

Automatically-segmented **COVID-19 infection in Chest CT**

(To be corrected)

Trained segmentation network

AI training engine

HEDEFLER:

> Hastanelerde triyajda ve yatan hasta hizmetlerinde planlama ve verimlilik

>Yoğun bakım ünitelerinde doğru planlama, empirik antimikrobiyal tedavinin başlanması

>Mortalitenin düşürülmesi, yatış süresinin kısaltılması, Uygun maliyetli tedavi yönetimi

Hastanede direnç sorununa yönelik erken tedbir alınmasını sağlayabilir.

Personel arasında zaman kaybının önüne geçebilir.

> Daha doğru ve hızlı bir şekilde sepsis teşhisi koyma kapasitelerinin artırılması

Yapay zekaların sepsis tanısına destek olma sürecinde doktorların karar verme sürecine entegre edilmesi de önemlidir.

- Komorbiditeler, önceki yatış, önceki nosokomiyal enfeksiyon gibi olayları dahil ederek sepsis riskinin 48 saatten daha önce tahmin edilebilmesi

SEPS

KISITLILIKLAR

Sepsis gibi acil durumlarda veri toplama süreci karmaşık ve zaman alıcı olabilir. Bu nedenle, yapay zeka algoritmaları için yeterli yapılandırılmış veri bulunamayabilir veya verilerin kalitesi yeterli olmayabilir.

Sepsis teşhisi koymak için kullanılan yapay zeka algoritmaları, eğitim veri setindeki durumlara benzer olmayan, farklı bir hasta grubu için doğru sonuçlar vermeyebilir.

Yapay zeka algoritmalarının kullanımı, hastaların veri gizliliği ve güvenliği, hastaların insan dışı bir teknoloji tarafından teşhis edilmesi ve tedavi edilmesi gibi etik konuları da beraberinde getirir. Bu nedenle, yapay zeka algoritmalarının kullanımıyla ilgili etik ve hukuki sorunlar dikkate alınmalıdır.

ANAHTAR NOKTALAR

olabilir.

çalışmasını ikame etmeyi değil, tamamlayı hedefler!

Klinisyenlerin yapay zeka bilgilerini artırmak, büyük veri işleme ve mekanizmalarının sağlıklı işleyişi için benzersiz bir fırsat sunar.

Yapay zeka tabanlı sistemler tıbbi kayıtlardan elde edilen verileri kullanarak sepsis olasılığını tahmin edebilir. Bu sistem, hastalara daha erken ve daha doğru bir teşhis konulmasına yardımcı

- Yapay zeka algoritmaları yüksek duyarlılık ve özgüllük oranlarına ulaşabilse de doktorun klinik
 - karar verme

